These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32471189)

  • 1. Using Artificial Intelligence for Pattern Recognition in a Sports Context.
    Rodrigues ACN; Pereira AS; Mendes RMS; Araújo AG; Couceiro MS; Figueiredo AJ
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wearable-based sports health monitoring system using CNN and LSTM with self-attentions.
    Wang TY; Cui J; Fan Y
    PLoS One; 2023; 18(10):e0292012. PubMed ID: 37819909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning.
    Uddin MZ; Soylu A
    Sci Rep; 2021 Aug; 11(1):16455. PubMed ID: 34385552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Improved VMD-LSTM Model in Sports Artificial Intelligence.
    Zhang T; Fu C
    Comput Intell Neurosci; 2022; 2022():3410153. PubMed ID: 35875744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using Artificial Intelligence-Enhanced Sensing and Wearable Technology in Sports Medicine and Performance Optimisation.
    Chidambaram S; Maheswaran Y; Patel K; Sounderajah V; Hashimoto DA; Seastedt KP; McGregor AH; Markar SR; Darzi A
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.
    Wu Z; Zhang J; Chen K; Fu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Framework for Intelligent Swimming Analytics with Wearable Sensors for Stroke Classification.
    Costa J; Silva C; Santos M; Fernandes T; Faria S
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-term memory neural network-based cognitive computing in sports training complexity pattern recognition.
    Wu G; Ji H
    Soft comput; 2022 Jan; ():1-16. PubMed ID: 35035279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine and deep learning for sport-specific movement recognition: a systematic review of model development and performance.
    Cust EE; Sweeting AJ; Ball K; Robertson S
    J Sports Sci; 2019 Mar; 37(5):568-600. PubMed ID: 30307362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices.
    Qi J; Yang Y; Peng X; Newcombe L; Simpson A; Yang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2492-2495. PubMed ID: 31946403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unlocking the potential of artificial intelligence in sports cardiology: does it have a role in evaluating athlete's heart?
    Palermi S; Vecchiato M; Saglietto A; Niederseer D; Oxborough D; Ortega-Martorell S; Olier I; Castelletti S; Baggish A; Maffessanti F; Biffi A; D'Andrea A; Zorzi A; Cavarretta E; D'Ascenzi F
    Eur J Prev Cardiol; 2024 Mar; 31(4):470-482. PubMed ID: 38198776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From the Laboratory to the Field: IMU-Based Shot and Pass Detection in Football Training and Game Scenarios Using Deep Learning.
    Stoeve M; Schuldhaus D; Gamp A; Zwick C; Eskofier BM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boxing behavior recognition based on artificial intelligence convolutional neural network with sports psychology assistant.
    Kong Y; Duan Z
    Sci Rep; 2024 Apr; 14(1):7640. PubMed ID: 38561402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel deep neural network based pattern field classification architectures.
    Huang K; Zhang S; Zhang R; Hussain A
    Neural Netw; 2020 Jul; 127():82-95. PubMed ID: 32344155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning ensembles of neural networks by means of a Bayesian artificial immune system.
    Castro PA; Von Zuben FJ
    IEEE Trans Neural Netw; 2011 Feb; 22(2):304-16. PubMed ID: 21189236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. View-invariant action recognition based on artificial neural networks.
    Iosifidis A; Tefas A; Pitas I
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):412-24. PubMed ID: 24808548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern learning with deep neural networks in EMG-based speech recognition.
    Wand M; Schultz T
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4200-3. PubMed ID: 25570918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lesion size quantification in SPECT using an artificial neural network classification approach.
    Tourassi GD; Floyd CE
    Comput Biomed Res; 1995 Jun; 28(3):257-70. PubMed ID: 7554859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning.
    Abdar M; Samami M; Dehghani Mahmoodabad S; Doan T; Mazoure B; Hashemifesharaki R; Liu L; Khosravi A; Acharya UR; Makarenkov V; Nahavandi S
    Comput Biol Med; 2021 Aug; 135():104418. PubMed ID: 34052016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.