BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32471324)

  • 1. Chitinase system of
    Pentekhina I; Hattori T; Tran DM; Shima M; Watanabe T; Sugimoto H; Suzuki K
    Biosci Biotechnol Biochem; 2020 Sep; 84(9):1936-1947. PubMed ID: 32471324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fish Pathogen Aliivibrio salmonicida LFI1238 Can Degrade and Metabolize Chitin despite Gene Disruption in the Chitinolytic Pathway.
    Skåne A; Minniti G; Loose JSM; Mekasha S; Bissaro B; Mathiesen G; Arntzen MØ; Vaaje-Kolstad G
    Appl Environ Microbiol; 2021 Sep; 87(19):e0052921. PubMed ID: 34319813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases.
    Suzuki K; Taiyoji M; Sugawara N; Nikaidou N; Henrissat B; Watanabe T
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):587-96. PubMed ID: 10527937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation.
    Suzuki K; Sugawara N; Suzuki M; Uchiyama T; Katouno F; Nikaidou N; Watanabe T
    Biosci Biotechnol Biochem; 2002 May; 66(5):1075-83. PubMed ID: 12092818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase.
    Huang L; Garbulewska E; Sato K; Kato Y; Nogawa M; Taguchi G; Shimosaka M
    J Biosci Bioeng; 2012 Mar; 113(3):293-9. PubMed ID: 22178339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A trimodular bacterial enzyme combining hydrolytic activity with oxidative glycosidic bond cleavage efficiently degrades chitin.
    Mekasha S; Tuveng TR; Askarian F; Choudhary S; Schmidt-Dannert C; Niebisch A; Modregger J; Vaaje-Kolstad G; Eijsink VGH
    J Biol Chem; 2020 Jul; 295(27):9134-9146. PubMed ID: 32398257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP).
    Gutiérrez-Román MI; Dunn MF; Tinoco-Valencia R; Holguín-Meléndez F; Huerta-Palacios G; Guillén-Navarro K
    World J Microbiol Biotechnol; 2014 Jan; 30(1):33-42. PubMed ID: 23824666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity.
    Hamre AG; Strømnes AS; Gustavsen D; Vaaje-Kolstad G; Eijsink VGH; Sørlie M
    Carbohydr Res; 2019 Feb; 473():66-71. PubMed ID: 30640029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression and characterization of two chitinases with synergistic effect and antifungal activity from Xenorhabdus nematophila.
    Liu J; NanGong Z; Zhang J; Song P; Tang Y; Gao Y; Wang Q
    World J Microbiol Biotechnol; 2019 Jul; 35(7):106. PubMed ID: 31267229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of the chitinase system of Serratia marcescens 2170.
    Watanabe T; Kimura K; Sumiya T; Nikaidou N; Suzuki K; Suzuki M; Taiyoji M; Ferrer S; Regue M
    J Bacteriol; 1997 Nov; 179(22):7111-7. PubMed ID: 9371460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a novel chitinase from Aeromonas hydrophila AH-1N for the degradation of chitin within fungal mycelium.
    Stumpf AK; Vortmann M; Dirks-Hofmeister ME; Moerschbacher BM; Philipp B
    FEMS Microbiol Lett; 2019 Jan; 366(1):. PubMed ID: 30596975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning, heterologous expression, and in silico sequence analysis of Enterobacter GH19 class I chitinase (chiRAM gene).
    Abady SM; M Ghanem K; Ghanem NB; Embaby AM
    Mol Biol Rep; 2022 Feb; 49(2):951-969. PubMed ID: 34773550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, expression, and characterization of a chitinase from the chitinolytic bacterium Aeromonas hydrophila strain SUWA-9.
    Lan X; Zhang X; Hu J; Shimosaka M
    Biosci Biotechnol Biochem; 2006 Oct; 70(10):2437-42. PubMed ID: 17031053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase.
    Paspaliari DK; Loose JS; Larsen MH; Vaaje-Kolstad G
    FEBS J; 2015 Mar; 282(5):921-36. PubMed ID: 25565565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. strain FPU-7.
    Itoh T; Hibi T; Fujii Y; Sugimoto I; Fujiwara A; Suzuki F; Iwasaki Y; Kim JK; Taketo A; Kimoto H
    Appl Environ Microbiol; 2013 Dec; 79(23):7482-90. PubMed ID: 24077704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function.
    Itoh Y; Kawase T; Nikaidou N; Fukada H; Mitsutomi M; Watanabe T; Itoh Y
    Biosci Biotechnol Biochem; 2002 May; 66(5):1084-92. PubMed ID: 12092819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activity and patterns of N-acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1.
    Moon C; Seo DJ; Song YS; Hong SH; Choi SH; Jung WJ
    Microb Pathog; 2017 Dec; 113():218-224. PubMed ID: 29074434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of the three chitin-binding domains within the multidomain chitinase Chi92 from Aeromonas hydrophila JP101.
    Wu ML; Chuang YC; Chen JP; Chen CS; Chang MC
    Appl Environ Microbiol; 2001 Nov; 67(11):5100-6. PubMed ID: 11679332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic efficiency of chitinase-D on insoluble chitinous substrates was improved by fusing auxiliary domains.
    Madhuprakash J; El Gueddari NE; Moerschbacher BM; Podile AR
    PLoS One; 2015; 10(1):e0116823. PubMed ID: 25615694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of α-chitin substrates with varying particle size and crystallinity reveals substrate preferences of the chitinases and lytic polysaccharide monooxygenase of Serratia marcescens.
    Nakagawa YS; Eijsink VG; Totani K; Vaaje-Kolstad G
    J Agric Food Chem; 2013 Nov; 61(46):11061-6. PubMed ID: 24168426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.