These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 32471347)

  • 1. The corrected gene proximity map for analyzing the 3D genome organization using Hi-C data.
    Ye C; Paccanaro A; Gerstein M; Yan KK
    BMC Bioinformatics; 2020 May; 21(1):222. PubMed ID: 32471347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GrapHi-C: graph-based visualization of Hi-C datasets.
    MacKay K; Kusalik A; Eskiw CH
    BMC Res Notes; 2018 Jun; 11(1):418. PubMed ID: 29958536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The properties of genome conformation and spatial gene interaction and regulation networks of normal and malignant human cell types.
    Wang Z; Cao R; Taylor K; Briley A; Caldwell C; Cheng J
    PLoS One; 2013; 8(3):e58793. PubMed ID: 23536826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normalization of a chromosomal contact map.
    Cournac A; Marie-Nelly H; Marbouty M; Koszul R; Mozziconacci J
    BMC Genomics; 2012 Aug; 13():436. PubMed ID: 22935139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Practical Analysis of Genome Contact Interaction Experiments.
    Carty MA; Elemento O
    Methods Mol Biol; 2016; 1418():177-89. PubMed ID: 27008015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line.
    Maslova A; Plotnikov V; Nuriddinov M; Gridina M; Fishman V; Krasikova A
    BMC Genomics; 2023 Feb; 24(1):66. PubMed ID: 36750787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MOGEN: a tool for reconstructing 3D models of genomes from chromosomal conformation capturing data.
    Trieu T; Cheng J
    Bioinformatics; 2016 May; 32(9):1286-92. PubMed ID: 26722115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic meta-analysis of the interplay between 3D chromatin organization and gene expression programs under basal and stress conditions.
    Nurick I; Shamir R; Elkon R
    Epigenetics Chromatin; 2018 Aug; 11(1):49. PubMed ID: 30157915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of gene co-expression from chromatin contacts with graph attention network.
    Zhang K; Wang C; Sun L; Zheng J
    Bioinformatics; 2022 Sep; 38(19):4457-4465. PubMed ID: 35929807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying quantitatively differential chromosomal compartmentalization changes and their biological significance from Hi-C data using DARIC.
    Kai Y; Liu N; Orkin SH; Yuan GC
    BMC Genomics; 2023 Oct; 24(1):614. PubMed ID: 37833630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra- and inter-chromosomal interactions correlate with CTCF binding genome wide.
    Botta M; Haider S; Leung IX; Lio P; Mozziconacci J
    Mol Syst Biol; 2010 Nov; 6():426. PubMed ID: 21045820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.