BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 32471439)

  • 1. Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network.
    Chen G; Wei X; Lei H; Liqin Y; Yuxin L; Yakang D; Daoying G
    Biomed Eng Online; 2020 May; 19(1):38. PubMed ID: 32471439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography.
    Nakao T; Hanaoka S; Nomura Y; Sato I; Nemoto M; Miki S; Maeda E; Yoshikawa T; Hayashi N; Abe O
    J Magn Reson Imaging; 2018 Apr; 47(4):948-953. PubMed ID: 28836310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An automatic detection method of cerebral aneurysms in time-of-flight magnetic resonance angiography images based on attention 3D U-Net.
    Chen G; Meng C; Ruoyu D; Dongdong W; Liqin Y; Wei X; Yuxin L; Daoying G
    Comput Methods Programs Biomed; 2022 Oct; 225():106998. PubMed ID: 35939977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated unruptured cerebral aneurysms detection in TOF MR angiography images using dual-channel SE-3D UNet: a multi-center research.
    Chen G; Yifang B; Jiajun Z; Dongdong W; Zhiyong Z; Ruoyu D; Bin D; Sirong P; Daoying G; Meng C; Yakang D; Yuxin L
    Eur Radiol; 2023 May; 33(5):3532-3543. PubMed ID: 36725720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coarse-to-fine cascade deep learning neural network for segmenting cerebral aneurysms in time-of-flight magnetic resonance angiography.
    Chen M; Geng C; Wang D; Zhou Z; Di R; Li F; Piao S; Zhang J; Li Y; Dai Y
    Biomed Eng Online; 2022 Sep; 21(1):71. PubMed ID: 36163014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection on intracranial aneurysm from digital subtraction angiography with cascade convolutional neural networks.
    Duan H; Huang Y; Liu L; Dai H; Chen L; Zhou L
    Biomed Eng Online; 2019 Nov; 18(1):110. PubMed ID: 31727057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms.
    Mallouhi A; Felber S; Chemelli A; Dessl A; Auer A; Schocke M; Jaschke WR; Waldenberger P
    AJR Am J Roentgenol; 2003 Jan; 180(1):55-64. PubMed ID: 12490476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography.
    Stember JN; Chang P; Stember DM; Liu M; Grinband J; Filippi CG; Meyers P; Jambawalikar S
    J Digit Imaging; 2019 Oct; 32(5):808-815. PubMed ID: 30511281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A system to detect cerebral aneurysms in multimodality angiographic data sets.
    Hentschke CM; Beuing O; Paukisch H; Scherlach C; Skalej M; Tönnies KD
    Med Phys; 2014 Sep; 41(9):091904. PubMed ID: 25186391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dense, deep learning-based intracranial aneurysm detection on TOF MRI using two-stage regularized U-Net.
    Claux F; Baudouin M; Bogey C; Rouchaud A
    J Neuroradiol; 2023 Feb; 50(1):9-15. PubMed ID: 35307554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint two-stage convolutional neural networks for intracranial aneurysms detection on 3D TOF-MRA.
    Zhou Y; Yang Y; Fang T; Jia S; Nie S; Ye X
    Phys Med Biol; 2023 Sep; 68(18):. PubMed ID: 37607561
    [No Abstract]   [Full Text] [Related]  

  • 12. Three-dimensional time-of-flight (3D TOF) magnetic resonance angiography (MRA) and contrast-enhanced MRA of intracranial aneurysms treated with platinum coils.
    Wikström J; Ronne-Engström E; Gal G; Enblad P; Tovi M
    Acta Radiol; 2008 Mar; 49(2):190-6. PubMed ID: 18300146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unenhanced Time-of-Flight MR Angiography versus Gadolinium-Enhanced Time-of-Flight MR Angiography in the Follow-Up of Coil-Embolized Aneurysms.
    Behme D; Malinova V; Kallenberg K; Knauth M; Mohr A
    J Neurol Surg A Cent Eur Neurosurg; 2016 Sep; 77(5):400-5. PubMed ID: 27168318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracranial aneurysm detection with 3T magnetic resonance angiography.
    Tang PH; Hui F; Sitoh YY
    Ann Acad Med Singap; 2007 Jun; 36(6):388-93. PubMed ID: 17597961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fenestrations accompanied by intracranial aneurysms assessed with magnetic resonance angiography.
    Sun ZK; Li M; Li MH; Li YD; Sun WP; Zhu YQ
    Neurol India; 2012; 60(1):45-9. PubMed ID: 22406779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automated intracranial aneurysm detection and segmentation from digital subtraction angiography series using an end-to-end spatiotemporal deep neural network.
    Jin H; Geng J; Yin Y; Hu M; Yang G; Xiang S; Zhai X; Ji Z; Fan X; Hu P; He C; Qin L; Zhang H
    J Neurointerv Surg; 2020 Oct; 12(10):1023-1027. PubMed ID: 32471827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transluminal color-coded three-dimensional magnetic resonance angiography for visualization of signal intensity distribution pattern within an unruptured cerebral aneurysm: preliminarily assessment with anterior communicating artery aneurysms.
    Satoh T; Ekino C; Ohsako C
    Neuroradiology; 2004 Aug; 46(8):628-34. PubMed ID: 15243724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms.
    Ueda D; Yamamoto A; Nishimori M; Shimono T; Doishita S; Shimazaki A; Katayama Y; Fukumoto S; Choppin A; Shimahara Y; Miki Y
    Radiology; 2019 Jan; 290(1):187-194. PubMed ID: 30351253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.