BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 32471688)

  • 1. Tunneling Nanotubes: The Fuel of Tumor Progression?
    Pinto G; Brou C; Zurzolo C
    Trends Cancer; 2020 Oct; 6(10):874-888. PubMed ID: 32471688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids.
    Pinto G; Saenz-de-Santa-Maria I; Chastagner P; Perthame E; Delmas C; Toulas C; Moyal-Jonathan-Cohen E; Brou C; Zurzolo C
    Biochem J; 2021 Jan; 478(1):21-39. PubMed ID: 33245115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunneling nanotubes evoke pericyte/endothelial communication during normal and tumoral angiogenesis.
    Errede M; Mangieri D; Longo G; Girolamo F; de Trizio I; Vimercati A; Serio G; Frei K; Perris R; Virgintino D
    Fluids Barriers CNS; 2018 Oct; 15(1):28. PubMed ID: 30290761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia.
    Allegra A; Di Gioacchino M; Cancemi G; Casciaro M; Petrarca C; Musolino C; Gangemi S
    Cancers (Basel); 2022 Jan; 14(3):. PubMed ID: 35158927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 3.0 Cell Communication: New Insights in the Usefulness of Tunneling Nanotubes for Glioblastoma Treatment.
    Taiarol L; Formicola B; Fagioli S; Sierri G; D'Aloia A; Kravicz M; Renda A; Viale F; Dal Magro R; Ceriani M; Re F
    Cancers (Basel); 2021 Aug; 13(16):. PubMed ID: 34439156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.
    Patheja P; Sahu K
    Exp Cell Res; 2017 Jun; 355(2):182-193. PubMed ID: 28412243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of metabolism and tunneling nanotube-mediated intercellular mitochondria exchange in cancer drug resistance.
    Hekmatshoar Y; Nakhle J; Galloni M; Vignais ML
    Biochem J; 2018 Jul; 475(14):2305-2328. PubMed ID: 30064989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment.
    Polak R; de Rooij B; Pieters R; den Boer ML
    Blood; 2015 Nov; 126(21):2404-14. PubMed ID: 26297738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging Tunneling Membrane Tubes Elucidates Cell Communication in Tumors.
    Lou E; Gholami S; Romin Y; Thayanithy V; Fujisawa S; Desir S; Steer CJ; Subramanian S; Fong Y; Manova-Todorova K; Moore MAS
    Trends Cancer; 2017 Oct; 3(10):678-685. PubMed ID: 28958386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GFAP serves as a structural element of tunneling nanotubes between glioblastoma cells and could play a role in the intercellular transfer of mitochondria.
    Simone L; Capobianco DL; Di Palma F; Binda E; Legnani FG; Vescovi AL; Svelto M; Pisani F
    Front Cell Dev Biol; 2023; 11():1221671. PubMed ID: 37886397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes.
    Thayanithy V; Dickson EL; Steer C; Subramanian S; Lou E
    Transl Res; 2014 Nov; 164(5):359-65. PubMed ID: 24929208
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Lou E
    Front Oncol; 2020; 10():559548. PubMed ID: 33324545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunneling nanotubes: The intercellular conduits contributing to cancer pathogenesis and its therapy.
    Melwani PK; Pandey BN
    Biochim Biophys Acta Rev Cancer; 2023 Nov; 1878(6):189028. PubMed ID: 37993000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Microscopic Characterization of Tunneling Nanotubes in Living U87 MG and LN229 Glioblastoma Cells.
    Matejka N; Amarlou A; Neubauer J; Rudigkeit S; Reindl J
    Cells; 2024 Mar; 13(5):. PubMed ID: 38474428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lost in translation: applying 2D intercellular communication via tunneling nanotubes in cell culture to physiologically relevant 3D microenvironments.
    Lou E; O'Hare P; Subramanian S; Steer CJ
    FEBS J; 2017 Mar; 284(5):699-707. PubMed ID: 27801976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions.
    Valdebenito S; Malik S; Luu R; Loudig O; Mitchell M; Okafo G; Bhat K; Prideaux B; Eugenin EA
    Sci Rep; 2021 Jul; 11(1):14556. PubMed ID: 34267246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Abounit S; Delage E; Zurzolo C
    Curr Protoc Cell Biol; 2015 Jun; 67():12.10.1-12.10.21. PubMed ID: 26061240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of α-Particle Radiation on Intercellular Communication Networks of Tunneling Nanotubes in U87 Glioblastoma Cells.
    Matejka N; Reindl J
    Front Oncol; 2020; 10():1691. PubMed ID: 33014842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes.
    Sáenz-de-Santa-María I; Bernardo-Castiñeira C; Enciso E; García-Moreno I; Chiara JL; Suarez C; Chiara MD
    Oncotarget; 2017 Mar; 8(13):20939-20960. PubMed ID: 28423494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
    Sahu P; Jena SR; Samanta L
    Curr Cancer Drug Targets; 2018; 18(6):514-521. PubMed ID: 29189162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.