BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 32471916)

  • 1. Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of
    Juergens H; Hakkaart XDV; Bras JE; Vente A; Wu L; Benjamin KR; Pronk JT; Daran-Lapujade P; Mans R
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory reoxidation of NADH is a key contributor to high oxygen requirements of oxygen-limited cultures of Ogataea parapolymorpha.
    Dekker WJC; Jürgens H; Ortiz-Merino RA; Mooiman C; van den Berg R; Kaljouw A; Mans R; Pronk JT
    FEMS Yeast Res; 2022 Feb; 22(1):. PubMed ID: 35137036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates.
    Rebnegger C; Vos T; Graf AB; Valli M; Pronk JT; Daran-Lapujade P; Mattanovich D
    Appl Environ Microbiol; 2016 Aug; 82(15):4570-4583. PubMed ID: 27208115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates.
    Vos T; Hakkaart XD; de Hulster EA; van Maris AJ; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2016 Jun; 15(1):111. PubMed ID: 27317316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain.
    Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P
    Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of Hsf1 as a master regulator of heat shock response in the thermotolerant methylotrophic yeast Ogataea parapolymorpha.
    Choo JH; Lee SB; Moon HY; Lee KH; Yoo SJ; Kim KP; Kang HA
    J Microbiol; 2021 Feb; 59(2):151-163. PubMed ID: 33527316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shewanella oneidensis MR-1 Utilizes both Sodium- and Proton-Pumping NADH Dehydrogenases during Aerobic Growth.
    Duhl KL; Tefft NM; TerAvest MA
    Appl Environ Microbiol; 2018 Jun; 84(12):. PubMed ID: 29654176
    [No Abstract]   [Full Text] [Related]  

  • 9. Glucose metabolism in the yeast Schwanniomyces castellii: role of phosphorylation site I and an alternative respiratory pathway.
    Zimmer E; Blanchard S; Boze H; Moulin G; Galzy P
    Appl Environ Microbiol; 1997 Jul; 63(7):2779-84. PubMed ID: 9212425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha.
    Kurtzman CP
    Antonie Van Leeuwenhoek; 2011 Oct; 100(3):455-62. PubMed ID: 21671193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae.
    Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fed-batch mode in shake flasks by slow-release technique.
    Jeude M; Dittrich B; Niederschulte H; Anderlei T; Knocke C; Klee D; Büchs J
    Biotechnol Bioeng; 2006 Oct; 95(3):433-45. PubMed ID: 16736531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria.
    Overkamp KM; Bakker BM; Kötter P; van Tuijl A; de Vries S; van Dijken JP; Pronk JT
    J Bacteriol; 2000 May; 182(10):2823-30. PubMed ID: 10781551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov.
    Suh SO; Zhou JJ
    FEMS Yeast Res; 2010 Aug; 10(5):631-8. PubMed ID: 20491937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures.
    Johanson A; Goel A; Olsson L; Franzén CJ
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31953330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state.
    Kayser A; Weber J; Hecht V; Rinas U
    Microbiology (Reading); 2005 Mar; 151(Pt 3):693-706. PubMed ID: 15758216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate.
    Baerends RJ; de Hulster E; Geertman JM; Daran JM; van Maris AJ; Veenhuis M; van der Klei IJ; Pronk JT
    Appl Environ Microbiol; 2008 May; 74(10):3182-8. PubMed ID: 18378663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the genes of glycerol catabolism and glycerol facilitator improves glycerol conversion to ethanol in the methylotrophic thermotolerant yeast Ogataea polymorpha.
    Semkiv M; Kata I; Ternavska O; Sibirny W; Dmytruk K; Sibirny A
    Yeast; 2019 May; 36(5):329-339. PubMed ID: 30903803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.