These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 32472060)
1. Genomic prediction applied to multiple traits and environments in second season maize hybrids. de Oliveira AA; Resende MFR; Ferrão LFV; Amadeu RR; Guimarães LJM; Guimarães CT; Pastina MM; Margarido GRA Heredity (Edinb); 2020 Aug; 125(1-2):60-72. PubMed ID: 32472060 [TBL] [Abstract][Full Text] [Related]
2. Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids. Acosta-Pech R; Crossa J; de Los Campos G; Teyssèdre S; Claustres B; Pérez-Elizalde S; Pérez-Rodríguez P Theor Appl Genet; 2017 Jul; 130(7):1431-1440. PubMed ID: 28401254 [TBL] [Abstract][Full Text] [Related]
3. Novel strategies for genomic prediction of untested single-cross maize hybrids using unbalanced historical data. Dias KOG; Piepho HP; Guimarães LJM; Guimarães PEO; Parentoni SN; Pinto MO; Noda RW; Magalhães JV; Guimarães CT; Garcia AAF; Pastina MM Theor Appl Genet; 2020 Feb; 133(2):443-455. PubMed ID: 31758202 [TBL] [Abstract][Full Text] [Related]
4. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Dias KODG; Gezan SA; Guimarães CT; Nazarian A; da Costa E Silva L; Parentoni SN; de Oliveira Guimarães PE; de Oliveira Anoni C; Pádua JMV; de Oliveira Pinto M; Noda RW; Ribeiro CAG; de Magalhães JV; Garcia AAF; de Souza JC; Guimarães LJM; Pastina MM Heredity (Edinb); 2018 Jul; 121(1):24-37. PubMed ID: 29472694 [TBL] [Abstract][Full Text] [Related]
5. Genomic Prediction of Complex Traits in an Allogamous Annual Crop: The Case of Maize Single-Cross Hybrids. Martins Oliveira IC; Bernardeli A; Soler Guilhen JH; Pastina MM Methods Mol Biol; 2022; 2467():543-567. PubMed ID: 35451790 [TBL] [Abstract][Full Text] [Related]
13. Accurate prediction of complex traits for individuals and offspring from parents using a simple, rapid, and efficient method for gene-based breeding in cotton and maize. Liu YH; Zhang M; Scheuring CF; Cilkiz M; Sze SH; Smith CW; Murray SC; Xu W; Zhang HB Plant Sci; 2022 Mar; 316():111153. PubMed ID: 35151437 [TBL] [Abstract][Full Text] [Related]
14. Hybrid breeding of rice via genomic selection. Cui Y; Li R; Li G; Zhang F; Zhu T; Zhang Q; Ali J; Li Z; Xu S Plant Biotechnol J; 2020 Jan; 18(1):57-67. PubMed ID: 31124256 [TBL] [Abstract][Full Text] [Related]
15. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize. Adak A; DeSalvio AJ; Arik MA; Murray SC G3 (Bethesda); 2024 Jul; 14(7):. PubMed ID: 38776257 [TBL] [Abstract][Full Text] [Related]
16. Genomic-Enabled Prediction in Maize Using Kernel Models with Genotype × Environment Interaction. Bandeira E Sousa M; Cuevas J; de Oliveira Couto EG; Pérez-Rodríguez P; Jarquín D; Fritsche-Neto R; Burgueño J; Crossa J G3 (Bethesda); 2017 Jun; 7(6):1995-2014. PubMed ID: 28455415 [TBL] [Abstract][Full Text] [Related]
17. Modeling copy number variation in the genomic prediction of maize hybrids. Lyra DH; Galli G; Alves FC; Granato ÍSC; Vidotti MS; Bandeira E Sousa M; Morosini JS; Crossa J; Fritsche-Neto R Theor Appl Genet; 2019 Jan; 132(1):273-288. PubMed ID: 30382311 [TBL] [Abstract][Full Text] [Related]
18. Multi-omics-based prediction of hybrid performance in canola. Knoch D; Werner CR; Meyer RC; Riewe D; Abbadi A; Lücke S; Snowdon RJ; Altmann T Theor Appl Genet; 2021 Apr; 134(4):1147-1165. PubMed ID: 33523261 [TBL] [Abstract][Full Text] [Related]
19. Genomic prediction and association mapping of maize grain yield in multi-environment trials based on reaction norm models. Tolley SA; Brito LF; Wang DR; Tuinstra MR Front Genet; 2023; 14():1221751. PubMed ID: 37719703 [TBL] [Abstract][Full Text] [Related]