BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32472505)

  • 21. Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution.
    Lee SY; Choi HJ
    J Environ Manage; 2018 Mar; 209():382-392. PubMed ID: 29309963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria.
    Xiang L; Chan LC; Wong JW
    Chemosphere; 2000 Jul; 41(1-2):283-7. PubMed ID: 10819212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in chlorinated organic pollutants and heavy metal content of sediments during pyrolysis.
    Hu Z; Navarro R; Nomura N; Kong H; Wijesekara S; Matsumura M
    Environ Sci Pollut Res Int; 2007 Jan; 14(1):12-8. PubMed ID: 17352123
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of calcium carbonate in the process of heavy metal biosorption from solutions: synergy of metal removal mechanisms.
    Wierzba S; Makuchowska-Fryc J; Kłos A; Ziembik Z; Ochędzan-Siodłak W
    Sci Rep; 2022 Oct; 12(1):17668. PubMed ID: 36271239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of heavy metal from sludge by the combined application of a biodegradable biosurfactant and complexing agent in enhanced electrokinetic treatment.
    Tang J; He J; Liu T; Xin X; Hu H
    Chemosphere; 2017 Dec; 189():599-608. PubMed ID: 28963977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk).
    Saeed A; Iqbal M; Akhtar MW
    J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of cadmium and arsenic from water through biomineralization.
    Kaur M; Sidhu N; Reddy MS
    Environ Monit Assess; 2023 Aug; 195(9):1019. PubMed ID: 37548767
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal removal from aqueous solution in sequential fluidized-bed reactors.
    Lee CI; Yang WF
    Environ Technol; 2005 Dec; 26(12):1345-53. PubMed ID: 16372569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D; Itana F; Olsson M
    Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chelant extraction of heavy metals from contaminated soils.
    Peters RW
    J Hazard Mater; 1999 Apr; 66(1-2):151-210. PubMed ID: 10379036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cocoa shells for heavy metal removal from acidic solutions.
    Meunier N; Laroulandie J; Blais JF; Tyagi RD
    Bioresour Technol; 2003 Dec; 90(3):255-63. PubMed ID: 14575948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.
    Yang X; Liu J; McGrouther K; Huang H; Lu K; Guo X; He L; Lin X; Che L; Ye Z; Wang H
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):974-84. PubMed ID: 25772863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils.
    Ottosen LM; Hansen HK; Ribeiro AB; Villumsen A
    J Hazard Mater; 2001 Aug; 85(3):291-9. PubMed ID: 11489529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone.
    Aziz HA; Adlan MN; Ariffin KS
    Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Bioavailability, Translocation, and Accumulation Characteristic of Heavy Metals in a Soil-Crop System from a Typical Carbonate Rock Area in Guangxi, China].
    Ma HH; Peng M; Liu F; Guo F; Tang SQ; Liu XJ; Zhou YL; Yang K; Li K; Yang Z; Cheng HX
    Huan Jing Ke Xue; 2020 Jan; 41(1):449-459. PubMed ID: 31854948
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of bioleaching of heavy metals from sediment with indigenous bacteria using agricultural sulfur soil conditioners.
    Wu C; Jiang M; Hsieh L; Cai Y; Shen Y; Wang H; Lin Q; Shen C; Hu B; Lou L
    Sci Total Environ; 2020 Feb; 703():134812. PubMed ID: 31734500
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple optical fibre biosensor based on immobilised enzyme for monitoring of trace heavy metal ions.
    Kuswandi B
    Anal Bioanal Chem; 2003 Aug; 376(7):1104-10. PubMed ID: 12851731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].
    Jin J; Li XD; Chi Y; Yan JH
    Huan Jing Ke Xue; 2010 Apr; 31(4):1101-7. PubMed ID: 20527198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil.
    Chang CY; Chen SY; Klipkhayai P; Chiemchaisri C
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6818-6828. PubMed ID: 30635877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.