BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32472505)

  • 41. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fabrication of novel buckypaper metal oxide nano-catalysis glycerol carbonate/MWCNTs membrane for efficient removal of heavy metals.
    Alterary SS; Alshahrani AA; Alsahli SA
    Heliyon; 2022 Dec; 8(12):e12633. PubMed ID: 36643332
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II).
    Bhattacharya A; Naik SN; Khare SK
    J Environ Manage; 2018 Jun; 215():143-152. PubMed ID: 29567554
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Theoretical study on the inhibition mechanisms of heavy metal ions on urease activity.
    Huang M; Cui P; Zhou J; Liu C; Wang Y
    Chemosphere; 2023 Dec; 345():140416. PubMed ID: 37827462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Evaluation of the Combined Removal of Heavy Metals by Saponin and Citric Acid from Municipal Sewage Sludges and Metal Stability Features].
    Ye T; Huang L; Zhang KQ; Zhang B; Chang H; Liu ZJ; Du LZ
    Huan Jing Ke Xue; 2017 Nov; 38(11):4850-4859. PubMed ID: 29965432
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on urea hydrolysis. Part 2. Effects of some heavy metals on urease activity.
    Daif MA; El-Din MM
    Beitr Trop Landwirtsch Veterinarmed; 1979; 17(3):261-6. PubMed ID: 550859
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enzyme biosensor systems based on porous silicon photoluminescence for detection of glucose, urea and heavy metals.
    Syshchyk O; Skryshevsky VA; Soldatkin OO; Soldatkin AP
    Biosens Bioelectron; 2015 Apr; 66():89-94. PubMed ID: 25460887
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria.
    Karwowska E; Wojtkowska M; Andrzejewska D
    J Hazard Mater; 2015 Dec; 299():35-41. PubMed ID: 26073519
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of constructed wetland for the removal of heavy metals from industrial wastewater.
    Khan S; Ahmad I; Shah MT; Rehman S; Khaliq A
    J Environ Manage; 2009 Aug; 90(11):3451-7. PubMed ID: 19535201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal and metalloid immobilization by microbiologically induced carbonates precipitation.
    Tamayo-Figueroa DP; Castillo E; Brandão PFB
    World J Microbiol Biotechnol; 2019 Mar; 35(4):58. PubMed ID: 30900009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of temperature on removal of heavy metals from contaminated river sediments via bioleaching.
    Tsai LJ; Yu KC; Chen SF; Kung PY
    Water Res; 2003 May; 37(10):2449-57. PubMed ID: 12727257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Removal of urea in ultrapure water system by urease-coated reverse osmosis membrane.
    Choi SJ; Crane L; Kang S; Boyer TH; Perreault F
    Water Res X; 2024 Jan; 22():100211. PubMed ID: 38298331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heavy metal removal from wastewater and leachate co-treatment sludge by sulfur oxidizing bacteria.
    Aralp LC; Erdincler A; Onay TT
    Water Sci Technol; 2001; 44(10):53-8. PubMed ID: 11794681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure.
    Alomary AA; Belhadj S
    Environ Monit Assess; 2007 Dec; 135(1-3):265-80. PubMed ID: 17342430
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of ionic liquids for the removal of heavy metals from wastewater and activated sludge.
    Fuerhacker M; Haile TM; Kogelnig D; Stojanovic A; Keppler B
    Water Sci Technol; 2012; 65(10):1765-73. PubMed ID: 22546790
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.