These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32472509)

  • 1. Preparing the optimal emergency response protocols by MOPSO for a real-world water distribution network.
    Moghaddam A; Afsharnia M; Peirovi Minaee R
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30625-30637. PubMed ID: 32472509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. f-MOPSO/Div: an improved extreme-point-based multi-objective PSO algorithm applied to a socio-economic-environmental conjunctive water use problem.
    Rezaei F; Safavi HR
    Environ Monit Assess; 2020 Nov; 192(12):767. PubMed ID: 33210172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved MOPSO algorithm for multi-objective optimization of reservoir operation under climate change.
    Mansouri M; Safavi HR; Rezaei F
    Environ Monit Assess; 2022 Mar; 194(4):261. PubMed ID: 35257239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient k-means clustering and greedy selection-based reduction of nodal search space for optimization of sensor placement in the water distribution networks.
    Gautam DK; Kotecha P; Subbiah S
    Water Res; 2022 Jul; 220():118666. PubMed ID: 35709596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of modified seagull optimization algorithm with archives in urban water distribution networks: Dealing with the consequences of sudden pollution load.
    Wang Q; Zhang M; Abdolhosseinzadeh S
    Heliyon; 2024 Feb; 10(3):e24920. PubMed ID: 38322904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient network architecture search via multiobjective particle swarm optimization based on decomposition.
    Jiang J; Han F; Ling Q; Wang J; Li T; Han H
    Neural Netw; 2020 Mar; 123():305-316. PubMed ID: 31896462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
    Rathi S; Gupta R
    J Environ Sci Eng; 2014 Apr; 56(2):169-78. PubMed ID: 26563063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Effective Application of Bacteria Quorum Sensing and Circular Elimination in MOPSO.
    Cheng S; Zhao LL; Jiang XY
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(1):56-63. PubMed ID: 28182543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-objective optimized scheduling model for hydropower reservoir based on improved particle swarm optimization algorithm.
    Fang R; Popole Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(12):12842-12850. PubMed ID: 30719667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting the best location of water quality sensors in water distribution networks by considering the importance of nodes and contaminations using NSGA-III (case study: Zahedan water distribution network, Iran).
    Harif S; Azizyan G; Dehghani Darmian M; Givehchi M
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):53229-53252. PubMed ID: 36853532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Presenting an agile supply chain mathematical model for COVID-19 (Corona) drugs using metaheuristic algorithms (case study: pharmaceutical industry).
    Shayannia SA
    Environ Sci Pollut Res Int; 2023 Jan; 30(3):6559-6572. PubMed ID: 35999421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A New Ground-Based Pseudolite System Deployment Algorithm Based on MOPSO.
    Tang W; Chen J; Yu C; Ding J; Wang R
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bi-objective design-for-control for improving the pressure management and resilience of water distribution networks.
    Ulusoy AJ; Mahmoud HA; Pecci F; Keedwell EC; Stoianov I
    Water Res; 2022 Aug; 222():118914. PubMed ID: 35933815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum Water Quality Monitoring Network Design for Bidirectional River Systems.
    Zhu X; Yue Y; Wong PWH; Zhang Y; Tan J
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29364851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal waste load allocation using graph model for conflict resolution.
    Saberi L; Niksokhan MH
    Water Sci Technol; 2017 Mar; 75(5-6):1512-1522. PubMed ID: 28333067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the capacity of water distribution networks using fitness function transformation.
    Huzsvár T; Wéber R; Déllei Á; Hős C
    Water Res; 2021 Aug; 201():117362. PubMed ID: 34174728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decision support system to divide a large network into suitable District Metered Areas.
    Gomes R; Marques AS; Sousa J
    Water Sci Technol; 2012; 65(9):1667-75. PubMed ID: 22508131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Adaptive Multiobjective Particle Swarm Optimization Based on Multiple Adaptive Methods.
    Han H; Lu W; Qiao J
    IEEE Trans Cybern; 2017 Sep; 47(9):2754-2767. PubMed ID: 28436915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-item multiperiodic inventory control problem with variable demand and discounts: a particle swarm optimization algorithm.
    Mousavi SM; Niaki ST; Bahreininejad A; Musa SN
    ScientificWorldJournal; 2014; 2014():136047. PubMed ID: 25093195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.