These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32472648)

  • 41. Periodontal Ligament and Alveolar Bone in Health and Adaptation: Tooth Movement.
    Jiang N; Guo W; Chen M; Zheng Y; Zhou J; Kim SG; Embree MC; Songhee Song K; Marao HF; Mao JJ
    Front Oral Biol; 2016; 18():1-8. PubMed ID: 26599112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of low-frequency mechanical vibration on orthodontic tooth movement.
    Yadav S; Dobie T; Assefnia A; Gupta H; Kalajzic Z; Nanda R
    Am J Orthod Dentofacial Orthop; 2015 Sep; 148(3):440-9. PubMed ID: 26321342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Orthodontic tooth movement causes decreased promoter expression of collagen type 1, bone sialoprotein and alpha-smooth muscle actin in the periodontal ligament.
    Olson C; Uribe F; Kalajzic Z; Utreja A; Nanda R; Rowe D; Wadhwa S
    Orthod Craniofac Res; 2012 Feb; 15(1):52-61. PubMed ID: 22264327
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PDL Progenitor-Mediated PDL Recovery Contributes to Orthodontic Relapse.
    Feng L; Yang R; Liu D; Wang X; Song Y; Cao H; He D; Gan Y; Kou X; Zhou Y
    J Dent Res; 2016 Aug; 95(9):1049-56. PubMed ID: 27161015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of osteocytes in bone resorption during orthodontic tooth movement.
    Matsumoto T; Iimura T; Ogura K; Moriyama K; Yamaguchi A
    J Dent Res; 2013 Apr; 92(4):340-5. PubMed ID: 23358677
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanical environment change in root, periodontal ligament, and alveolar bone in response to two canine retraction treatment strategies.
    Jiang F; Xia Z; Li S; Eckert G; Chen J
    Orthod Craniofac Res; 2015 Apr; 18 Suppl 1(0 1):29-38. PubMed ID: 25865531
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The expression and regulation of Wnt1 in tooth movement-initiated mechanotransduction.
    Ei Hsu Hlaing E; Ishihara Y; Odagaki N; Wang Z; Ikegame M; Kamioka H
    Am J Orthod Dentofacial Orthop; 2020 Dec; 158(6):e151-e160. PubMed ID: 33139146
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of Wnt3a, Wnt10b, β-catenin and DKK1 in periodontium during orthodontic tooth movement in rats.
    Lu J; Duan Y; Zhang M; Wu M; Wang Y
    Acta Odontol Scand; 2016; 74(3):217-23. PubMed ID: 26414930
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Intermittent force induces high RANKL expression in human periodontal ligament cells.
    Nakao K; Goto T; Gunjigake KK; Konoo T; Kobayashi S; Yamaguchi K
    J Dent Res; 2007 Jul; 86(7):623-8. PubMed ID: 17586708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of Corticision on paradental remodeling in orthodontic tooth movement.
    Kim SJ; Park YG; Kang SG
    Angle Orthod; 2009 Mar; 79(2):284-91. PubMed ID: 19216591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement.
    Garlet TP; Coelho U; Repeke CE; Silva JS; Cunha Fde Q; Garlet GP
    Cytokine; 2008 Jun; 42(3):330-5. PubMed ID: 18406624
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Compressive force-induced autophagy in periodontal ligament cells downregulates osteoclastogenesis during tooth movement.
    Chen L; Mo S; Hua Y
    J Periodontol; 2019 Oct; 90(10):1170-1181. PubMed ID: 31077358
    [TBL] [Abstract][Full Text] [Related]  

  • 53. γδT Cells Are Essential for Orthodontic Tooth Movement.
    Wald S; Leibowitz A; Aizenbud Y; Saba Y; Zubeidat K; Barel O; Koren N; Heyman O; Wilharm A; Sandrock I; Fleissig O; Tal Y; Prinz I; Aizenbud D; Chaushu S; Hovav AH
    J Dent Res; 2021 Jul; 100(7):731-738. PubMed ID: 33478315
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accelerated orthodontic tooth movement: molecular mechanisms.
    Huang H; Williams RC; Kyrkanides S
    Am J Orthod Dentofacial Orthop; 2014 Nov; 146(5):620-32. PubMed ID: 25439213
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Axin2+ PDL Cells Directly Contribute to New Alveolar Bone Formation in Response to Orthodontic Tension Force.
    Wang K; Xu C; Xie X; Jing Y; Chen PJ; Yadav S; Wang Z; Taylor RW; Wang J; Feng JQ
    J Dent Res; 2022 Jun; 101(6):695-703. PubMed ID: 35001706
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bone formation ability of Gli1
    Fujii S; Takebe H; Mizoguchi T; Nakamura H; Shimo T; Hosoya A
    Bone; 2023 Aug; 173():116786. PubMed ID: 37164217
    [TBL] [Abstract][Full Text] [Related]  

  • 57. MAPK and β-Catenin signaling: implication and interplay in orthodontic tooth movement.
    Yong J; Groeger S; Meyle J; Ruf S
    Front Biosci (Landmark Ed); 2022 Feb; 27(2):54. PubMed ID: 35226997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Compression and tension variably alter Osteoprotegerin expression via miR-3198 in periodontal ligament cells.
    Kanzaki H; Wada S; Yamaguchi Y; Katsumata Y; Itohiya K; Fukaya S; Miyamoto Y; Narimiya T; Noda K; Nakamura Y
    BMC Mol Cell Biol; 2019 Apr; 20(1):6. PubMed ID: 31041888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Orthodontic treatment and mechanical stress].
    Yamamoto TT
    Clin Calcium; 2008 Sep; 18(9):1254-63. PubMed ID: 18758030
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of alveolar decortications on orthodontic tooth movement and bone remodelling in rats.
    Dutra EH; Ahmida A; Lima A; Schneider S; Nanda R; Yadav S
    Eur J Orthod; 2018 Jul; 40(4):423-429. PubMed ID: 29092027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.