These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32473055)

  • 1. Enhancing in planta gene targeting efficiencies in Arabidopsis using temperature-tolerant CRISPR/LbCas12a.
    Merker L; Schindele P; Huang TK; Wolter F; Puchta H
    Plant Biotechnol J; 2020 Dec; 18(12):2382-2384. PubMed ID: 32473055
    [No Abstract]   [Full Text] [Related]  

  • 2. Using CRISPR/ttLbCas12a for in planta Gene Targeting in A. thaliana.
    Merker L; Schindele P; Puchta H
    Curr Protoc Plant Biol; 2020 Sep; 5(3):e20117. PubMed ID: 32865887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing.
    Schindele P; Puchta H
    Plant Biotechnol J; 2020 May; 18(5):1118-1120. PubMed ID: 31606929
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a.
    Huang TK; Armstrong B; Schindele P; Puchta H
    Plant Biotechnol J; 2021 Jul; 19(7):1314-1324. PubMed ID: 33511745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of CRISPR/LbCas12a-mediated gene editing in Arabidopsis.
    Zhang Q; Zhang Y; Chai Y
    PLoS One; 2022; 17(3):e0265114. PubMed ID: 35333864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny.
    Schiml S; Fauser F; Puchta H
    Plant J; 2014 Dec; 80(6):1139-50. PubMed ID: 25327456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol-free cotton.
    Li B; Liang S; Alariqi M; Wang F; Wang G; Wang Q; Xu Z; Yu L; Naeem Zafar M; Sun L; Si H; Yuan D; Guo W; Wang Y; Lindsey K; Zhang X; Jin S
    Plant Biotechnol J; 2021 Feb; 19(2):221-223. PubMed ID: 32854160
    [No Abstract]   [Full Text] [Related]  

  • 8. In planta gene targeting can be enhanced by the use of CRISPR/Cas12a.
    Wolter F; Puchta H
    Plant J; 2019 Dec; 100(5):1083-1094. PubMed ID: 31381206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas in Arabidopsis: overcoming challenges to accelerate improvements in crop photosynthetic efficiencies.
    Khumsupan P; Donovan S; McCormick AJ
    Physiol Plant; 2019 May; 166(1):428-437. PubMed ID: 30706492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Cas12a enables efficient biallelic gene targeting in rice.
    Li S; Zhang Y; Xia L; Qi Y
    Plant Biotechnol J; 2020 Jun; 18(6):1351-1353. PubMed ID: 31730252
    [No Abstract]   [Full Text] [Related]  

  • 13. CRISPR-Cas9: A revolution in genome editing in rheumatic diseases.
    Duroux-Richard I; Giovannangeli C; Apparailly F
    Joint Bone Spine; 2017 Jan; 84(1):1-4. PubMed ID: 27825565
    [No Abstract]   [Full Text] [Related]  

  • 14. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-mediated gene targeting in plants: finally a turn for the better for homologous recombination.
    Huang TK; Puchta H
    Plant Cell Rep; 2019 Apr; 38(4):443-453. PubMed ID: 30673818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Editing With TALEN and CRISPR/Cas in Rice.
    Bi H; Yang B
    Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing.
    Bayat H; Modarressi MH; Rahimpour A
    Curr Microbiol; 2018 Jan; 75(1):107-115. PubMed ID: 29189942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The new generation tool for CRISPR genome editing: CRISPR/Cpf1].
    Yang F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):361-371. PubMed ID: 28941336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome editing: The efficient tool CRISPR-Cpf1.
    Mahfouz MM
    Nat Plants; 2017 Mar; 3():17028. PubMed ID: 28260792
    [No Abstract]   [Full Text] [Related]  

  • 20. CRISPR/Cas System: Recent Advances and Future Prospects for Genome Editing.
    Manghwar H; Lindsey K; Zhang X; Jin S
    Trends Plant Sci; 2019 Dec; 24(12):1102-1125. PubMed ID: 31727474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.