These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32473213)
21. Studies on the crystallinity of a pharmaceutical development drug substance. Byard SJ; Jackson SL; Smail A; Bauer M; Apperley DC J Pharm Sci; 2005 Jun; 94(6):1321-35. PubMed ID: 15858842 [TBL] [Abstract][Full Text] [Related]
22. Comparison of molecular mobility in the glassy state between amorphous indomethacin and salicin based on spin-lattice relaxation times. Masuda K; Tabata S; Sakata Y; Hayase T; Yonemochi E; Terada K Pharm Res; 2005 May; 22(5):797-805. PubMed ID: 15906176 [TBL] [Abstract][Full Text] [Related]
23. How the Presence of Crystalline Phase Affects Structural Relaxation in Molecular Liquids: The Case of Amorphous Indomethacin. Svoboda R; Pakosta M; Doležel P Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003465 [TBL] [Abstract][Full Text] [Related]
24. Assessment of powder blend uniformity: Comparison of real-time NIR blend monitoring with stratified sampling in combination with HPLC and at-line NIR Chemical Imaging. Bakri B; Weimer M; Hauck G; Reich G Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):78-89. PubMed ID: 26455421 [TBL] [Abstract][Full Text] [Related]
25. Development of qualitative and quantitative analysis methods in pharmaceutical application with new selective signal excitation methods for 13 C solid-state nuclear magnetic resonance using 1 H T1rho relaxation time. Nasu M; Nemoto T; Mimura H; Sako K J Pharm Sci; 2013 Jan; 102(1):154-61. PubMed ID: 23147444 [TBL] [Abstract][Full Text] [Related]
26. Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy. Heinz A; Savolainen M; Rades T; Strachan CJ Eur J Pharm Sci; 2007 Nov; 32(3):182-92. PubMed ID: 17716878 [TBL] [Abstract][Full Text] [Related]
27. Using the low-frequency Raman spectroscopy to analyze the crystallization of amorphous indomethacin. Hédoux A; Paccou L; Guinet Y; Willart JF; Descamps M Eur J Pharm Sci; 2009 Sep; 38(2):156-64. PubMed ID: 19591926 [TBL] [Abstract][Full Text] [Related]
28. Application of diffuse reflectance near-infrared spectroscopy for determination of crystallinity. Seyer JJ; Luner PE; Kemper MS J Pharm Sci; 2000 Oct; 89(10):1305-16. PubMed ID: 10980505 [TBL] [Abstract][Full Text] [Related]
29. Solid-state NMR investigation of indomethacin-cyclodextrin complexes in PEG 6000 carrier. Wulff M; Aldén M; Tegenfeldt J Bioconjug Chem; 2002; 13(2):240-8. PubMed ID: 11906261 [TBL] [Abstract][Full Text] [Related]
30. Terahertz-spectroscopy for non-destructive determination of crystallinity of L-tartaric acid in smartFilms® and tablets made from paper. Ornik J; Knoth D; Koch M; Keck CM Int J Pharm; 2020 May; 581():119253. PubMed ID: 32217156 [TBL] [Abstract][Full Text] [Related]
32. Quantifying Micromolar Crystallinity in Pharmaceutical Materials Utilizing Du Y; Phyo P; Li M; Sorman B; McNevin M; Xu W; Liu Y; Su Y Anal Chem; 2022 Nov; 94(44):15341-15349. PubMed ID: 36306275 [TBL] [Abstract][Full Text] [Related]
33. Crystallization of amorphous indomethacin during dissolution: effect of processing and annealing. Greco K; Bogner R Mol Pharm; 2010 Oct; 7(5):1406-18. PubMed ID: 20459092 [TBL] [Abstract][Full Text] [Related]
34. Dispersive Raman Spectroscopy for Quantifying Amorphous Drug Content in Intact Tablets. Wabuyele BW; Sotthivirat S; Zhou GX; Ash J; Dhareshwar SS J Pharm Sci; 2017 Feb; 106(2):579-588. PubMed ID: 27938895 [TBL] [Abstract][Full Text] [Related]
35. Quantitative Measures of Crystalline Fenofibrate in Amorphous Solid Dispersion Formulations by X-Ray Microscopy. Neilly JP; Yin L; Leonard SE; Kenis PJA; Danzer GD; Pawate AS J Pharm Sci; 2020 Oct; 109(10):3078-3085. PubMed ID: 32679216 [TBL] [Abstract][Full Text] [Related]
36. Use of glancing angle X-ray powder diffractometry to depth-profile phase transformations during dissolution of indomethacin and theophylline tablets. Debnath S; Predecki P; Suryanarayanan R Pharm Res; 2004 Jan; 21(1):149-59. PubMed ID: 14984270 [TBL] [Abstract][Full Text] [Related]
37. Solid-state NMR characterization of high-loading solid solutions of API and excipients formed by electrospinning. Brettmann B; Bell E; Myerson A; Trout B J Pharm Sci; 2012 Apr; 101(4):1538-45. PubMed ID: 22213488 [TBL] [Abstract][Full Text] [Related]
38. Time domain NMR as a new process monitoring method for characterization of pharmaceutical hydrates. Schumacher SU; Rothenhäusler B; Willmann A; Thun J; Moog R; Kuentz M J Pharm Biomed Anal; 2017 Apr; 137():96-103. PubMed ID: 28107690 [TBL] [Abstract][Full Text] [Related]
39. A Time-Domain NMR Study of the State of Water in Wet Granules with Different Fillers and Its Contribution to the Wet Granulation Process and to the Characteristics of Granules. Ito T; Okada K; Leong KH; Hirai D; Hayashi Y; Kumada S; Kosugi A; Onuki Y Chem Pharm Bull (Tokyo); 2019; 67(3):271-276. PubMed ID: 30828004 [TBL] [Abstract][Full Text] [Related]
40. Advanced characterisation of encapsulated lipid powders regarding microstructure by time domain-nuclear magnetic resonance. Linke A; Anzmann T; Weiss J; Kohlus R J Microencapsul; 2017 Mar; 34(2):140-150. PubMed ID: 28298154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]