BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32473292)

  • 1. A generic PBTK model implemented in the MCRA platform: Predictive performance and uses in risk assessment of chemicals.
    Tebby C; van der Voet H; de Sousa G; Rorije E; Kumar V; de Boer W; Kruisselbrink JW; Bois FY; Faniband M; Moretto A; Brochot C
    Food Chem Toxicol; 2020 Aug; 142():111440. PubMed ID: 32473292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals.
    Olie JD; Bessems JG; Clewell HJ; Meulenbelt J; Hunault CC
    Chemosphere; 2015 Aug; 132():47-55. PubMed ID: 25794648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks.
    Armitage JM; Hughes L; Sangion A; Arnot JA
    Environ Int; 2021 Sep; 154():106557. PubMed ID: 33892222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput PBTK models for
    Breen M; Ring CL; Kreutz A; Goldsmith MR; Wambaugh JF
    Expert Opin Drug Metab Toxicol; 2021 Aug; 17(8):903-921. PubMed ID: 34056988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of the physiologically-based toxicokinetic (PBTK) model for ochratoxin A (OTA) in rats and humans.
    Su BD; Li XM; Huang ZW; Wang Y; Shao J; Xu YY; Shu LX; Li YB
    Ecotoxicol Environ Saf; 2024 May; 276():116277. PubMed ID: 38604061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability.
    Grech A; Tebby C; Brochot C; Bois FY; Bado-Nilles A; Dorne JL; Quignot N; Beaudouin R
    Sci Total Environ; 2019 Feb; 651(Pt 1):516-531. PubMed ID: 30243171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fish Physiologically Based Toxicokinetic Modeling Approach for In Vitro-In Vivo and Cross-Species Extrapolation of Endocrine-Disrupting Chemicals in Risk Assessment.
    Xie R; Xu Y; Ma M; Wang Z
    Environ Sci Technol; 2024 Feb; 58(8):3677-3689. PubMed ID: 38354091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a rapid, generic human gestational dose model.
    Kapraun DF; Sfeir M; Pearce RG; Davidson-Fritz SE; Lumen A; Dallmann A; Judson RS; Wambaugh JF
    Reprod Toxicol; 2022 Oct; 113():172-188. PubMed ID: 36122840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting the in vivo developmental toxicity of fenarimol from in vitro toxicity data using PBTK modelling-facilitated reverse dosimetry approach.
    Bhateria M; Taneja I; Karsauliya K; Sonker AK; Shibata Y; Sato H; Singh SP; Hisaka A
    Toxicol Appl Pharmacol; 2024 Mar; 484():116879. PubMed ID: 38431230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced prediction of internal concentrations of phenolic endocrine disrupting chemicals and their metabolites in fish by a physiologically based toxicokinetic incorporating metabolism (PBTK-MT) model.
    Liu YH; Yao L; Huang Z; Zhang YY; Chen CE; Zhao JL; Ying GG
    Environ Pollut; 2022 Dec; 314():120290. PubMed ID: 36180004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-individual exposure variability interpretation through reflection of biological age algorithm in physiologically based toxicokinetic model: Application to human risk assessment of di-isobutyl-phthalate.
    Jeong SH; Jang JH; Lee YB
    Environ Pollut; 2023 Nov; 336():122388. PubMed ID: 37598929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiology-based toxicokinetic modelling in the frame of the European Human Biomonitoring Initiative.
    Sarigiannis DA; Karakitsios S; Dominguez-Romero E; Papadaki K; Brochot C; Kumar V; Schuhmacher M; Sy M; Mielke H; Greiner M; Mengelers M; Scheringer M
    Environ Res; 2019 May; 172():216-230. PubMed ID: 30818231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PBTK model for assessment of operator exposure to haloxyfop using human biomonitoring and toxicokinetic data.
    Cooper AB; Aggarwal M; Bartels MJ; Morriss A; Terry C; Lord GA; Gant TW
    Regul Toxicol Pharmacol; 2019 Mar; 102():1-12. PubMed ID: 30543831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically-based kinetic modeling of vapours toxic to the respiratory tract.
    Bogdanffy MS; Sarangapani R
    Toxicol Lett; 2003 Feb; 138(1-2):103-17. PubMed ID: 12559695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment: recommendations from a joint EPAA--EURL ECVAM ADME workshop.
    Bessems JG; Loizou G; Krishnan K; Clewell HJ; Bernasconi C; Bois F; Coecke S; Collnot EM; Diembeck W; Farcal LR; Geraets L; Gundert-Remy U; Kramer N; Küsters G; Leite SB; Pelkonen OR; Schröder K; Testai E; Wilk-Zasadna I; Zaldívar-Comenges JM
    Regul Toxicol Pharmacol; 2014 Feb; 68(1):119-39. PubMed ID: 24287156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically based toxicokinetic modelling of Tri(2-chloroethyl) phosphate (TCEP) in mice accounting for multiple exposure routes.
    Ding J; He W; Sha W; Shan G; Zhu L; Zhu L; Feng J
    Ecotoxicol Environ Saf; 2024 Feb; 271():115976. PubMed ID: 38232524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MCRA toolbox of models and data to support chemical mixture risk assessment.
    van der Voet H; Kruisselbrink JW; de Boer WJ; van Lenthe MS; van den Heuvel JJBH; Crépet A; Kennedy MC; Zilliacus J; Beronius A; Tebby C; Brochot C; Luckert C; Lampen A; Rorije E; Sprong C; van Klaveren JD
    Food Chem Toxicol; 2020 Apr; 138():111185. PubMed ID: 32058012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-Species Extrapolation of Uptake and Disposition of Neutral Organic Chemicals in Fish Using a Multispecies Physiologically-Based Toxicokinetic Model Framework.
    Brinkmann M; Schlechtriem C; Reininghaus M; Eichbaum K; Buchinger S; Reifferscheid G; Hollert H; Preuss TG
    Environ Sci Technol; 2016 Feb; 50(4):1914-23. PubMed ID: 26794144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro to in vivo extrapolation for predicting human equivalent dose of phenolic endocrine disrupting chemicals: PBTK model development, biological pathways, outcomes and performance.
    Xie R; Wang X; Xu Y; Zhang L; Ma M; Wang Z
    Sci Total Environ; 2023 Nov; 897():165271. PubMed ID: 37422235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.