These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 32473459)
1. Assessing the role of microbial communities in the performance of constructed wetlands used to treat combined sewer overflows. Ruppelt JP; Tondera K; Wallace SJ; Button M; Pinnekamp J; Weber KP Sci Total Environ; 2020 Sep; 736():139519. PubMed ID: 32473459 [TBL] [Abstract][Full Text] [Related]
2. Elimination of micropollutants in four test-scale constructed wetlands treating combined sewer overflow: Influence of filtration layer height and feeding regime. Ruppelt JP; Pinnekamp J; Tondera K Water Res; 2020 Feb; 169():115214. PubMed ID: 31671295 [TBL] [Abstract][Full Text] [Related]
3. Reduction of bacteria and somatic coliphages in constructed wetlands for the treatment of combined sewer overflow (retention soil filters). Ruppelt JP; Tondera K; Schreiber C; Kistemann T; Pinnekamp J Int J Hyg Environ Health; 2018 May; 221(4):727-733. PubMed ID: 29728292 [TBL] [Abstract][Full Text] [Related]
4. Retention soil filter as post-treatment step to remove micropollutants from sewage treatment plant effluent. Brunsch AF; Ter Laak TL; Christoffels E; Rijnaarts HHM; Langenhoff AAM Sci Total Environ; 2018 Oct; 637-638():1098-1107. PubMed ID: 29801204 [TBL] [Abstract][Full Text] [Related]
5. Reduction of micropollutants and bacteria in a constructed wetland for combined sewer overflow treatment after 7 and 10 years of operation. Tondera K; Ruppelt JP; Pinnekamp J; Kistemann T; Schreiber C Sci Total Environ; 2019 Feb; 651(Pt 1):917-927. PubMed ID: 30257231 [TBL] [Abstract][Full Text] [Related]
6. Redox potential as a method to evaluate the performance of retention soil filters treating combined sewer overflows. Ruppelt JP; Tondera K; Vorenhout M; Van der Weken L; Pinnekamp J Sci Total Environ; 2019 Feb; 650(Pt 1):1628-1639. PubMed ID: 30308848 [TBL] [Abstract][Full Text] [Related]
8. Retention soil filters for the treatment of sewage treatment plant effluent and combined sewer overflow. Brunsch AF; Zubieta Florez P; Langenhoff AAM; Ter Laak TL; Rijnaarts HHM Sci Total Environ; 2020 Jan; 699():134426. PubMed ID: 31639549 [TBL] [Abstract][Full Text] [Related]
9. Removal of micropollutants, facultative pathogenic and antibiotic resistant bacteria in a full-scale retention soil filter receiving combined sewer overflow. Scheurer M; Heß S; Lüddeke F; Sacher F; Güde H; Löffler H; Gallert C Environ Sci Process Impacts; 2015 Jan; 17(1):186-96. PubMed ID: 25479187 [TBL] [Abstract][Full Text] [Related]
10. Retention of pharmaceutical residues and microorganisms at the Altendorf retention soil filter. Christoffels E; Mertens FM; Kistemann T; Schreiber C Water Sci Technol; 2014; 70(9):1503-9. PubMed ID: 25401314 [TBL] [Abstract][Full Text] [Related]
11. Spatial Differences among Micropollutants in Sewer Overflows: A Multisite Analysis Using Passive Samplers. Mutzner L; Bohren C; Mangold S; Bloem S; Ort C Environ Sci Technol; 2020 Jun; 54(11):6584-6593. PubMed ID: 32223223 [TBL] [Abstract][Full Text] [Related]
12. Removal of micropollutants and biological effects by conventional and intensified constructed wetlands treating municipal wastewater. Sossalla NA; Nivala J; Reemtsma T; Schlichting R; König M; Forquet N; van Afferden M; Müller RA; Escher BI Water Res; 2021 Aug; 201():117349. PubMed ID: 34171643 [TBL] [Abstract][Full Text] [Related]
13. Digging deep into a GAC filter - Temporal and spatial profiling of adsorbed organic micropollutants. Edefell E; Svahn O; Falås P; Bengtsson E; Axelsson M; Ullman R; Cimbritz M Water Res; 2022 Jun; 218():118477. PubMed ID: 35487159 [TBL] [Abstract][Full Text] [Related]
14. Removal of diclofenac and sulfamethoxazole from synthetic municipal waste water in microcosm downflow constructed wetlands: Start-up results. Nowrotek M; Sochacki A; Felis E; Miksch K Int J Phytoremediation; 2016; 18(2):157-63. PubMed ID: 26247111 [TBL] [Abstract][Full Text] [Related]
15. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators. Kahl S; Nivala J; van Afferden M; Müller RA; Reemtsma T Water Res; 2017 Nov; 125():490-500. PubMed ID: 28915479 [TBL] [Abstract][Full Text] [Related]
16. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Avila C; Nivala J; Olsson L; Kassa K; Headley T; Mueller RA; Bayona JM; García J Sci Total Environ; 2014 Oct; 494-495():211-7. PubMed ID: 25046612 [TBL] [Abstract][Full Text] [Related]
17. Bioremediation of rapid sand filters for removal of organic micropollutants during drinking water production. Timmers PHA; Siegers W; Ferreira ML; van der Wielen PWJJ Water Res; 2024 Feb; 249():120921. PubMed ID: 38039817 [TBL] [Abstract][Full Text] [Related]
18. Temporal and spatial variations of contaminant removal, enzyme activities, and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff. Yi XH; Jing DD; Wan J; Ma Y; Wang Y Environ Sci Pollut Res Int; 2016 May; 23(9):8565-76. PubMed ID: 26797946 [TBL] [Abstract][Full Text] [Related]
19. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Wolff D; Krah D; Dötsch A; Ghattas AK; Wick A; Ternes TA Water Res; 2018 Oct; 143():313-324. PubMed ID: 29986241 [TBL] [Abstract][Full Text] [Related]
20. Mesocosm constructed wetlands to remove micropollutants from wastewater treatment plant effluent: Effect of matrices and pre-treatments. Lei Y; Rijnaarts H; Langenhoff A Chemosphere; 2022 Oct; 305():135306. PubMed ID: 35714955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]