BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32474023)

  • 21. Analysis of 3-MCPD- and 3-MCPD dipalmitate-induced proteomic changes in rat liver.
    Braeuning A; Sawada S; Oberemm A; Lampen A
    Food Chem Toxicol; 2015 Dec; 86():374-84. PubMed ID: 26597043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proteomic analysis of 2-monochloropropanediol (2-MCPD) and 2-MCPD dipalmitate toxicity in rat kidney and liver in a 28-days study.
    Frenzel F; Oberemm A; Braeuning A; Lampen A
    Food Chem Toxicol; 2018 Nov; 121():1-10. PubMed ID: 30102926
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carcinogenicity study of 3-monochloropropane-1,2-diol in Sprague-Dawley rats.
    Cho WS; Han BS; Nam KT; Park K; Choi M; Kim SH; Jeong J; Jang DD
    Food Chem Toxicol; 2008 Sep; 46(9):3172-7. PubMed ID: 18680782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary exposure of Hong Kong adults to fatty acid esters of 3-monochloropropane-1,2-diol.
    Chung HY; Chung SW; Chan BT; Ho YY; Xiao Y
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(9):1508-12. PubMed ID: 23862736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3-monochloropropane-1,2-diol does not cause neurotoxicity in vitro or neurobehavioral deficits in rats.
    Kim K; Song C; Park Y; Koh S; Kim J; Kim S; Kim Y; Kim SU; Jung H
    Neurotoxicology; 2004 Mar; 25(3):377-85. PubMed ID: 15019300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of PGC-1α and metabolic signaling pathway in kidney injury following chronic administration with 3-MCPD as a food processing contaminant.
    Khosrokhavar R; Dizaji R; Nazari F; Sharafi A; Tajkey J; Hosseini MJ
    J Food Biochem; 2021 Jun; 45(6):e13744. PubMed ID: 33913518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteomic effects of repeated-dose oral exposure to 2-monochloropropanediol and its dipalmitate in rat testes.
    Frenzel F; Oberemm A; Lampen A; Braeuning A
    Food Chem Toxicol; 2018 Jun; 116(Pt B):354-359. PubMed ID: 29705614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3-Monochloropropane-1,2-diol (alpha-chlorohydrin) disrupts spermatogenesis and causes spermatotoxicity in males of the Egyptian fruit-bat (Rousettus aegyptiacus).
    Mahmoud YI; Taha A; Soliman S
    Biotech Histochem; 2018; 93(4):293-300. PubMed ID: 29595063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Occurrence of 3-monochloropropane-1,2-diol (3-MCPD) in food products].
    Gawarska H; Sawilska-Rautenstrauch D; Starski A; Karłowski K
    Rocz Panstw Zakl Hig; 2009; 60(3):213-6. PubMed ID: 20063689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipidomics Analysis Explores the Mechanism of Renal Injury in Rat Induced by 3-MCPD.
    Wei T; Cao N; Han T; Chen Y; Zhou X; Niu L; Liu W; Li C
    Toxics; 2023 May; 11(6):. PubMed ID: 37368578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism of antifertility in male rats treated with 3-monochloro-1,2-propanediol (3-MCPD).
    Kwack SJ; Kim SS; Choi YW; Rhee GS; Da Lee R; Seok JH; Chae SY; Won YH; Lim KJ; Choi KS; Park KL; Lee BM
    J Toxicol Environ Health A; 2004 Dec; 67(23-24):2001-11. PubMed ID: 15513898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boric Acid and Borax Protect Human Lymphocytes from Oxidative Stress and Genotoxicity Induced by 3-Monochloropropane-1,2-diol.
    Turkez H; Tozlu OO; Arslan ME; Baba C; Saracoglu MM; Yıldız E; Tatar A; Mardinoglu A
    Biol Trace Elem Res; 2024 Jan; ():. PubMed ID: 38216793
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of 3-Monochloropropane-1,2-diol and 2-Monochloropropane-1,3-diol (MCPD) Esters and Glycidyl Esters by Microwave Extraction in Different Foodstuffs.
    Marc C; Drouard-Pascarel V; Rétho C; Janvion P; Saltron F
    J Agric Food Chem; 2016 Jun; 64(21):4353-61. PubMed ID: 27133957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nephrotoxicity evaluation of 3-monochloropropane-1,2-diol exposure in Sprague-Dawley rats using data-independent acquisition-based quantitative proteomics analysis.
    Jin C; Min F; Zhong Y; Sun D; Luo R; Liu Q; Peng X
    Toxicol Lett; 2022 Mar; 356():110-120. PubMed ID: 34915118
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A 4-week study of four 3-monochloropropane-1,2-diol diesters on lipid metabolism in C57BL/6J mice.
    Lu J; Wang Z; Ren M; Feng G; Ye B; Wang Y; Fang B; Deng X; Guan S
    Environ Toxicol Pharmacol; 2015 Sep; 40(2):453-8. PubMed ID: 26280928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo genotoxicity studies with 3-monochloropropan-1,2-diol.
    Robjohns S; Marshall R; Fellows M; Kowalczyk G
    Mutagenesis; 2003 Sep; 18(5):401-4. PubMed ID: 12960406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxic mechanisms of 3-monochloropropane-1,2-diol on progesterone production in R2C rat leydig cells.
    Sun J; Bai S; Bai W; Zou F; Zhang L; Su Z; Zhang Q; Ou S; Huang Y
    J Agric Food Chem; 2013 Oct; 61(41):9955-60. PubMed ID: 24040863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3-MCPD and glycidol coexposure induces systemic toxicity and synergistic nephrotoxicity via NLRP3 inflammasome activation, necroptosis, and autophagic cell death.
    Liu PW; Li CI; Huang KC; Liu CS; Chen HL; Lee CC; Chiou YY; Chen RJ
    J Hazard Mater; 2021 Mar; 405():124241. PubMed ID: 33187795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic analysis of 3-MCPD and 3-MCPD dipalmitate-induced toxicity in rat kidney.
    Sawada S; Oberemm A; Buhrke T; Merschenz J; Braeuning A; Lampen A
    Arch Toxicol; 2016 Jun; 90(6):1437-48. PubMed ID: 26253146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relative oral bioavailability of 3-MCPD from 3-MCPD fatty acid esters in rats.
    Abraham K; Appel KE; Berger-Preiss E; Apel E; Gerling S; Mielke H; Creutzenberg O; Lampen A
    Arch Toxicol; 2013 Apr; 87(4):649-59. PubMed ID: 23229518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.