These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 32474311)
21. RO brine treatment and recovery by biological activated carbon and capacitive deionization process. Tao G; Viswanath B; Kekre K; Lee LY; Ng HY; Ong SL; Seah H Water Sci Technol; 2011; 64(1):77-82. PubMed ID: 22053461 [TBL] [Abstract][Full Text] [Related]
22. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents. Turan M; Ates A; Inanc B Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123 [TBL] [Abstract][Full Text] [Related]
23. Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in waste leachates generated from combustion residues during the formation of ettringite. Saikia N; Kato S; Kojima T Environ Toxicol Chem; 2006 Jul; 25(7):1710-9. PubMed ID: 16833129 [TBL] [Abstract][Full Text] [Related]
24. Study and evaluation of the characteristics of saline wastewater (brine) produced by desalination and industrial plants. Panagopoulos A Environ Sci Pollut Res Int; 2022 Apr; 29(16):23736-23749. PubMed ID: 34816342 [TBL] [Abstract][Full Text] [Related]
25. A Comprehensive Methodology for Monitoring Evaporitic Mineral Precipitation and Hydrochemical Evolution of Saline Lakes: The Case of Lake Magadi Soda Brine (East African Rift Valley, Kenya). Getenet M; García-Ruiz JM; Otálora F; Emmerling F; Al-Sabbagh D; Verdugo-Escamilla C Cryst Growth Des; 2022 Apr; 22(4):2307-2317. PubMed ID: 35401055 [TBL] [Abstract][Full Text] [Related]
26. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water. Wang Y; Ju L; Xu F; Tian L; Jia R; Song W; Li Y; Liu B Environ Res; 2020 Mar; 182():109063. PubMed ID: 31896469 [TBL] [Abstract][Full Text] [Related]
27. Evaluation of enhanced nanofiltration membranes for improving magnesium recovery schemes from seawater/brine: Integrating experimental performing data with a techno-economic assessment. Morgante C; Moghadamfar T; Lopez J; Cortina JL; Tamburini A J Environ Manage; 2024 Jun; 360():121192. PubMed ID: 38781880 [TBL] [Abstract][Full Text] [Related]
28. Sulphate control by ettringite precipitation in textile industry wastewaters. Kabdaşlı I; Bilgin A; Tünay O Environ Technol; 2016 Feb; 37(4):446-451. PubMed ID: 25833738 [TBL] [Abstract][Full Text] [Related]
29. A two-stage desalination process for zero liquid discharge of flue gas desulfurization wastewater by chloride precipitation. Xin Y; Zhou Z; Ming Q; Sun D; Han J; Ye X; Dai S; Jiang LM; Zhao X; An Y J Hazard Mater; 2020 Oct; 397():122744. PubMed ID: 32361139 [TBL] [Abstract][Full Text] [Related]
31. Protein removal from waste brines generated during ham salting through acidification and centrifugation. Gutiérrez-Martínez Mdel R; Muñoz-Guerrero H; Alcaína-Miranda MI; Barat JM J Food Sci; 2014 Mar; 79(3):E326-32. PubMed ID: 24673393 [TBL] [Abstract][Full Text] [Related]
32. The role of ferric coagulant on gypsum scaling and ion interception efficiency in nanofiltration at different pH values: Performance and mechanism. Lin D; Bai L; Gan Z; Zhao J; Li G; Aminabhavi TM; Liang H Water Res; 2020 May; 175():115695. PubMed ID: 32172057 [TBL] [Abstract][Full Text] [Related]
33. Achieving low-cost, highly selective nitrate removal with standard anion exchange resin by tuning recycled brine composition. Duan S; Tong T; Zheng S; Zhang X; Li S Water Res; 2020 Apr; 173():115571. PubMed ID: 32035280 [TBL] [Abstract][Full Text] [Related]
34. Integrated Membrane Process for the Treatment and Reuse of Residual Table Olive Fermentation Brine and Anaerobically Digested Sludge Centrate. Carbonell-Alcaina C; Soler-Cabezas JL; Bes-Piá A; Vincent-Vela MC; Mendoza-Roca JA; Pastor-Alcañiz L; Álvarez-Blanco S Membranes (Basel); 2020 Sep; 10(10):. PubMed ID: 32987759 [TBL] [Abstract][Full Text] [Related]
35. Treatment of spent brine from a nitrate exchange process using combined biological denitrification and sulfate precipitation. Bae BU; Kim CH; Kim YI Water Sci Technol; 2004; 49(5-6):413-9. PubMed ID: 15137452 [TBL] [Abstract][Full Text] [Related]
36. Sulfate removal from waste chemicals by precipitation. Benatti CT; Tavares CR; Lenzi E J Environ Manage; 2009 Jan; 90(1):504-11. PubMed ID: 18222593 [TBL] [Abstract][Full Text] [Related]
37. Treatment of dairy wastewater by two-stage membrane operation with ultrafiltration and nanofiltration. Gong YW; Zhang HX; Cheng XN Water Sci Technol; 2012; 65(5):915-9. PubMed ID: 22339027 [TBL] [Abstract][Full Text] [Related]
38. Solid solutions between CrO4- and SO4-ettringite Ca6(Al(OH)6)2[(CrO4)x(SO4)(1-x)]3*26 H2O. Leisinger SM; Lothenbach B; Le Saout G; Kägi R; Wehrli B; Johnson CA Environ Sci Technol; 2010 Dec; 44(23):8983-8. PubMed ID: 21053912 [TBL] [Abstract][Full Text] [Related]
39. Interactions between chloride and sulfate or silica removals from wastewater using an advanced lime-aluminum softening process: equilibrium modeling. Abdel-Wahab A; Batchelor B Water Environ Res; 2007 May; 79(5):528-35. PubMed ID: 17571843 [TBL] [Abstract][Full Text] [Related]
40. A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Luo J; Ding L; Qi B; Jaffrin MY; Wan Y Bioresour Technol; 2011 Aug; 102(16):7437-42. PubMed ID: 21624829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]