BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32474602)

  • 1. Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods.
    Alves AAC; da Costa RM; Bresolin T; Fernandes Júnior GA; Espigolan R; Ribeiro AMF; Carvalheiro R; de Albuquerque LG
    J Anim Sci; 2020 Jun; 98(6):. PubMed ID: 32474602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Random forest estimation of genomic breeding values for disease susceptibility over different disease incidences and genomic architectures in simulated cow calibration groups.
    Naderi S; Yin T; König S
    J Dairy Sci; 2016 Sep; 99(9):7261-7273. PubMed ID: 27344385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods.
    Alves AAC; Espigolan R; Bresolin T; Costa RM; Fernandes Júnior GA; Ventura RV; Carvalheiro R; Albuquerque LG
    Anim Genet; 2021 Feb; 52(1):32-46. PubMed ID: 33191532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.
    Abdollahi-Arpanahi R; Gianola D; Peñagaricano F
    Genet Sel Evol; 2020 Feb; 52(1):12. PubMed ID: 32093611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers.
    Heidaritabar M; Wolc A; Arango J; Zeng J; Settar P; Fulton JE; O'Sullivan NP; Bastiaansen JW; Fernando RL; Garrick DJ; Dekkers JC
    J Anim Breed Genet; 2016 Oct; 133(5):334-46. PubMed ID: 27357473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic studies with preselected markers reveal dominance effects influencing growth traits in Eucalyptus nitens.
    Thumma BR; Joyce KR; Jacobs A
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-Enabled Estimates of Additive and Nonadditive Genetic Variances and Prediction of Apple Phenotypes Across Environments.
    Kumar S; Molloy C; Muñoz P; Daetwyler H; Chagné D; Volz R
    G3 (Bethesda); 2015 Oct; 5(12):2711-8. PubMed ID: 26497141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed model methods for genomic prediction and variance component estimation of additive and dominance effects using SNP markers.
    Da Y; Wang C; Wang S; Hu G
    PLoS One; 2014; 9(1):e87666. PubMed ID: 24498162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic Studies Reveal Substantial Dominant Effects and Improved Genomic Predictions in an Open-Pollinated Breeding Population of
    Thavamanikumar S; Arnold RJ; Luo J; Thumma BR
    G3 (Bethesda); 2020 Oct; 10(10):3751-3763. PubMed ID: 32788286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Including dominance effects in the genomic BLUP method for genomic evaluation.
    Nishio M; Satoh M
    PLoS One; 2014; 9(1):e85792. PubMed ID: 24416447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array.
    Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH
    J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a Bayesian model including QTL markers increases prediction reliability when test animals are distant from the reference population.
    Ma P; Lund MS; Aamand GP; Su G
    J Dairy Sci; 2019 Aug; 102(8):7237-7247. PubMed ID: 31155255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic prediction with machine learning in sugarcane, a complex highly polyploid clonally propagated crop with substantial non-additive variation for key traits.
    Chen C; Powell O; Dinglasan E; Ross EM; Yadav S; Wei X; Atkin F; Deomano E; Hayes BJ
    Plant Genome; 2023 Dec; 16(4):e20390. PubMed ID: 37728221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opportunities for genomic selection in American mink: A simulation study.
    Karimi K; Sargolzaei M; Plastow GS; Wang Z; Miar Y
    PLoS One; 2019; 14(3):e0213873. PubMed ID: 30870528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic breeding values, SNP effects and gene identification for disease traits in cow training sets.
    Naderi S; Bohlouli M; Yin T; König S
    Anim Genet; 2018 Jun; 49(3):178-192. PubMed ID: 29624705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs.
    Xiang T; Li T; Li J; Li X; Wang J
    FASEB J; 2023 Jun; 37(6):e22961. PubMed ID: 37178007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy.
    Bolormaa S; Gore K; van der Werf JH; Hayes BJ; Daetwyler HD
    Anim Genet; 2015 Oct; 46(5):544-56. PubMed ID: 26360638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic best linear unbiased prediction method including imprinting effects for genomic evaluation.
    Nishio M; Satoh M
    Genet Sel Evol; 2015 Apr; 47(1):32. PubMed ID: 25928098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of linear and machine learning models to genomic prediction of fatty acid composition in Japanese Black cattle.
    Nishio M; Inoue K; Arakawa A; Ichinoseki K; Kobayashi E; Okamura T; Fukuzawa Y; Ogawa S; Taniguchi M; Oe M; Takeda M; Kamata T; Konno M; Takagi M; Sekiya M; Matsuzawa T; Inoue Y; Watanabe A; Kobayashi H; Shibata E; Ohtani A; Yazaki R; Nakashima R; Ishii K
    Anim Sci J; 2023; 94(1):e13883. PubMed ID: 37909231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian neural networks with variable selection for prediction of genotypic values.
    van Bergen GHH; Duenk P; Albers CA; Bijma P; Calus MPL; Wientjes YCJ; Kappen HJ
    Genet Sel Evol; 2020 May; 52(1):26. PubMed ID: 32414320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.