These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32474870)
1. Analysis of Tooth Innervation in Microfluidic Coculture Devices. Pagella P; Mitsiadis TA Methods Mol Biol; 2020; 2155():99-106. PubMed ID: 32474870 [TBL] [Abstract][Full Text] [Related]
2. Analysis of Developing Tooth Germ Innervation Using Microfluidic Co-culture Devices. Pagella P; Miran S; Mitsiadis T J Vis Exp; 2015 Aug; (102):e53114. PubMed ID: 26327218 [TBL] [Abstract][Full Text] [Related]
3. Microfluidics co-culture systems for studying tooth innervation. Pagella P; Neto E; Jiménez-Rojo L; Lamghari M; Mitsiadis TA Front Physiol; 2014; 5():326. PubMed ID: 25202282 [TBL] [Abstract][Full Text] [Related]
4. Neurturin mRNA expression suggests roles in trigeminal innervation of the first branchial arch and in tooth formation. Luukko K; Saarma M; Thesleff I Dev Dyn; 1998 Oct; 213(2):207-19. PubMed ID: 9786421 [TBL] [Abstract][Full Text] [Related]
5. Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Lillesaar C; Fried K Neuroscience; 2004; 125(1):149-61. PubMed ID: 15051154 [TBL] [Abstract][Full Text] [Related]
6. Expression of neurotrophin receptors during rat tooth development is developmentally regulated, independent of innervation, and suggests functions in the regulation of morphogenesis and innervation. Luukko K; Moshnyakov M; Sainio K; Saarma M; Sariola H; Thesleff I Dev Dyn; 1996 May; 206(1):87-99. PubMed ID: 9019249 [TBL] [Abstract][Full Text] [Related]
7. Expression of GDNF and its receptors in developing tooth is developmentally regulated and suggests multiple roles in innervation and organogenesis. Luukko K; Suvanto P; Saarma M; Thesleff I Dev Dyn; 1997 Dec; 210(4):463-71. PubMed ID: 9415430 [TBL] [Abstract][Full Text] [Related]
8. Two-way communication between ex vivo tissues on a microfluidic chip: application to tumor-lymph node interaction. Shim S; Belanger MC; Harris AR; Munson JM; Pompano RR Lab Chip; 2019 Mar; 19(6):1013-1026. PubMed ID: 30742147 [TBL] [Abstract][Full Text] [Related]
9. Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device. Fan L; Luo T; Guan Z; Chow YT; Chen S; Wei T; Shakoor A; Lam RHW; Sun D Biofabrication; 2020 Apr; 12(3):035005. PubMed ID: 32182591 [TBL] [Abstract][Full Text] [Related]
10. Advances in Nerve Injury Models on a Chip. Lee D; Yang K; Xie J Adv Biol (Weinh); 2023 Aug; 7(8):e2200227. PubMed ID: 36709421 [TBL] [Abstract][Full Text] [Related]
11. Sensory neurons and osteoblasts: close partners in a microfluidic platform. Neto E; Alves CJ; Sousa DM; Alencastre IS; Lourenço AH; Leitão L; Ryu HR; Jeon NL; Fernandes R; Aguiar P; Almeida RD; Lamghari M Integr Biol (Camb); 2014 Jun; 6(6):586-95. PubMed ID: 24675920 [TBL] [Abstract][Full Text] [Related]
12. Bone Marrow Stromal Cells Promote Innervation of Bioengineered Teeth. Strub M; Keller L; Idoux-Gillet Y; Lesot H; Clauss F; Benkirane-Jessel N; Kuchler-Bopp S J Dent Res; 2018 Sep; 97(10):1152-1159. PubMed ID: 29879365 [TBL] [Abstract][Full Text] [Related]
13. Neurotrophin mRNA expression in the developing tooth suggests multiple roles in innervation and organogenesis. Luukko K; Arumäe U; Karavanov A; Moshnyakov M; Sainio K; Sariola H; Saarma M; Thesleff I Dev Dyn; 1997 Oct; 210(2):117-29. PubMed ID: 9337133 [TBL] [Abstract][Full Text] [Related]
14. Coordination of tooth morphogenesis and neuronal development through tissue interactions: lessons from mouse models. Luukko K; Kettunen P Exp Cell Res; 2014 Jul; 325(2):72-7. PubMed ID: 24631295 [TBL] [Abstract][Full Text] [Related]
15. An experimental study of timing and topography of early tooth development in the mouse embryo with an analysis of the role of innervation. Lumsden AG; Buchanan JA Arch Oral Biol; 1986; 31(5):301-11. PubMed ID: 3463257 [TBL] [Abstract][Full Text] [Related]
16. Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip. Huang HY; Shen HH; Tien CH; Li CJ; Fan SK; Liu CH; Hsu WS; Yao DJ PLoS One; 2015; 10(5):e0124196. PubMed ID: 25933003 [TBL] [Abstract][Full Text] [Related]
17. Expression patterns of Sema3F, PlexinA4, -A3, Neuropilin1 and -2 in the postnatal mouse molar suggest roles in tooth innervation and organogenesis. Sijaona A; Luukko K; Kvinnsland IH; Kettunen P Acta Odontol Scand; 2012 Mar; 70(2):140-8. PubMed ID: 21815834 [TBL] [Abstract][Full Text] [Related]
18. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes. Kongsuphol P; Gupta S; Liu Y; Bhuvanendran Nair Gourikutty S; Biswas SK; Ramadan Q Sci Rep; 2019 Mar; 9(1):4887. PubMed ID: 30894623 [TBL] [Abstract][Full Text] [Related]
19. Tissue interactions in the regulation of axon pathfinding during tooth morphogenesis. Luukko K; Kvinnsland IH; Kettunen P Dev Dyn; 2005 Nov; 234(3):482-8. PubMed ID: 16217735 [TBL] [Abstract][Full Text] [Related]
20. Appendix C: Automated Vitrification of Mammalian Embryos on a Digital Microfluidic Device. Liu J; Pyne DG; Abdelgawad M; Sun Y Methods Mol Biol; 2017; 1568():309-316. PubMed ID: 28421507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]