These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32475117)

  • 1. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin.
    Hontani Y; Broser M; Luck M; Weißenborn J; Kloz M; Hegemann P; Kennis JTM
    J Am Chem Soc; 2020 Jul; 142(26):11464-11473. PubMed ID: 32475117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photochemical chromophore isomerization in histidine kinase rhodopsin HKR1.
    Luck M; Bruun S; Keidel A; Hegemann P; Hildebrandt P
    FEBS Lett; 2015 Apr; 589(10):1067-71. PubMed ID: 25836735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoisomerization pathway of the microbial rhodopsin chromophore in solution.
    Sugiura M; Kandori H
    Photochem Photobiol Sci; 2024 Aug; 23(8):1435-1443. PubMed ID: 38886314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin.
    Manathunga M; Jenkins AJ; Orozco-Gonzalez Y; Ghanbarpour A; Borhan B; Geiger JH; Larsen DS; Olivucci M
    J Phys Chem Lett; 2020 Jun; 11(11):4245-4252. PubMed ID: 32374610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic photoisomerization dynamics of protonated Schiff-base retinal.
    Kiefer HV; Gruber E; Langeland J; Kusochek PA; Bochenkova AV; Andersen LH
    Nat Commun; 2019 Mar; 10(1):1210. PubMed ID: 30872581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the ultrafast vibrational dynamics of all-trans and 13-cis retinal isomerization in Anabaena Sensory Rhodopsin.
    Roy PP; Kato Y; Abe-Yoshizumi R; Pieri E; Ferré N; Kandori H; Buckup T
    Phys Chem Chem Phys; 2018 Dec; 20(48):30159-30173. PubMed ID: 30484447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction.
    Kaziannis S; Broser M; van Stokkum IHM; Dostal J; Busse W; Munhoven A; Bernardo C; Kloz M; Hegemann P; Kennis JTM
    Proc Natl Acad Sci U S A; 2024 Mar; 121(12):e2318996121. PubMed ID: 38478688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins.
    Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111930. PubMed ID: 34670002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early steps in the photocycle of a photosensor protein sensory rhodopsin I from Salinibacter ruber.
    Sudo Y; Mizuno M; Wei Z; Takeuchi S; Tahara T; Mizutani Y
    J Phys Chem B; 2014 Feb; 118(6):1510-8. PubMed ID: 24447185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1.
    Luck M; Hegemann P
    J Plant Physiol; 2017 Oct; 217():77-84. PubMed ID: 28784569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excited-State Dynamics of a CRABPII-Based Microbial Rhodopsin Mimic.
    Li G; Meng J; Yu S; Bai X; Dai J; Song Y; Peng X; Zhao Q
    J Phys Chem B; 2024 Aug; 128(32):7712-7721. PubMed ID: 38940335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Roles of a Conserved Glutamate Residue for Unique Biophysical Properties in a New Group of Microbial Rhodopsins Homologous to TAT Rhodopsin.
    Mannen K; Nagata T; Rozenberg A; Konno M; Del Carmen Marín M; Bagherzadeh R; Béjà O; Uchihashi T; Inoue K
    J Mol Biol; 2024 Mar; 436(5):168331. PubMed ID: 37898385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual Photoisomerization Pathway in a Near-Infrared Light Absorbing Enzymerhodopsin.
    Sugiura M; Ishikawa K; Katayama K; Sumii Y; Abe-Yoshizumi R; Tsunoda SP; Furutani Y; Shibata N; Brown LS; Kandori H
    J Phys Chem Lett; 2022 Oct; 13(40):9539-9543. PubMed ID: 36201035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State.
    Das I; Pushkarev A; Sheves M
    J Phys Chem B; 2021 Aug; 125(31):8797-8804. PubMed ID: 34342994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. E113 is required for the efficient photoisomerization of the unprotonated chromophore in a UV-absorbing visual pigment.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2008 Oct; 47(41):10829-33. PubMed ID: 18803408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity.
    Stensitzki T; Muders V; Schlesinger R; Heberle J; Heyne K
    Front Mol Biosci; 2015; 2():41. PubMed ID: 26258130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin.
    Bühl E; Braun M; Lakatos A; Glaubitz C; Wachtveitl J
    Biol Chem; 2015 Sep; 396(9-10):1109-15. PubMed ID: 26083266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.