These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32475386)
1. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO Xu S; Dai B; Zhao W; Jiang L; Huang H Anal Chim Acta; 2020 Jul; 1120():1-10. PubMed ID: 32475386 [TBL] [Abstract][Full Text] [Related]
2. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Eissa S; Zourob M Biosens Bioelectron; 2017 May; 91():169-174. PubMed ID: 28006685 [TBL] [Abstract][Full Text] [Related]
3. Double Photosystems-Based 'Z-Scheme' Photoelectrochemical Sensing Mode for Ultrasensitive Detection of Disease Biomarker Accompanying Three-Dimensional DNA Walker. Lv S; Zhang K; Zeng Y; Tang D Anal Chem; 2018 Jun; 90(11):7086-7093. PubMed ID: 29775052 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: Based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C Li Y; Bu Y; Jiang F; Dai X; Ao JP Biosens Bioelectron; 2020 Feb; 150():111903. PubMed ID: 31791875 [TBL] [Abstract][Full Text] [Related]
5. An electrochemical aptasensor for the milk allergen β-lactoglobulin detection based on a target-induced nicking site reconstruction strategy. Qiu Q; Ni X; Liu T; Li Z; An X; Chen X Analyst; 2021 Nov; 146(22):6808-6814. PubMed ID: 34647930 [TBL] [Abstract][Full Text] [Related]
6. A label-free photoelectrochemical immunosensor for detection of the milk allergen β-lactoglobulin based on Ag Sun X; Li C; Zhu Q; Huang H; Jing W; Chen Z; Kong L; Han L; Wang J; Li Y Anal Chim Acta; 2020 Dec; 1140():122-131. PubMed ID: 33218474 [TBL] [Abstract][Full Text] [Related]
7. Semiautomated Support Photoelectrochemical Immunosensing Platform for Portable and High-Throughput Immunoassay Based on Au Nanocrystal Decorated Specific Crystal Facets BiVO Shu J; Qiu Z; Lin Z; Cai G; Yang H; Tang D Anal Chem; 2016 Dec; 88(24):12539-12546. PubMed ID: 28193072 [TBL] [Abstract][Full Text] [Related]
8. Ti Liu Y; Zeng H; Chai Y; Yuan R; Liu H Chem Commun (Camb); 2019 Nov; 55(91):13729-13732. PubMed ID: 31661085 [TBL] [Abstract][Full Text] [Related]
9. Sputtering gold nanoparticles on nanoporous bismuth vanadate for sensitive and selective photoelectrochemical aptasensing of thrombin. Xin Y; Zhao Y; Qiu B; Zhang Z Chem Commun (Camb); 2017 Aug; 53(63):8898-8901. PubMed ID: 28740992 [TBL] [Abstract][Full Text] [Related]
10. A repeatable assembling and disassembling electrochemical aptamer cytosensor for ultrasensitive and highly selective detection of human liver cancer cells. Sun D; Lu J; Chen Z; Yu Y; Mo M Anal Chim Acta; 2015 Jul; 885():166-73. PubMed ID: 26231902 [TBL] [Abstract][Full Text] [Related]
11. Mycobacterium tuberculosis strain H37Rv Electrochemical Sensor Mediated by Aptamer and AuNPs-DNA. Zhang X; Feng Y; Duan S; Su L; Zhang J; He F ACS Sens; 2019 Apr; 4(4):849-855. PubMed ID: 30900450 [TBL] [Abstract][Full Text] [Related]
12. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline. Liu S; Wang Y; Xu W; Leng X; Wang H; Guo Y; Huang J Biosens Bioelectron; 2017 Feb; 88():181-187. PubMed ID: 27544787 [TBL] [Abstract][Full Text] [Related]
13. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Yao GH; Liang RP; Huang CF; Zhang L; Qiu JD Anal Chim Acta; 2015 Apr; 871():28-34. PubMed ID: 25847158 [TBL] [Abstract][Full Text] [Related]
14. Palindromic Molecular Beacon Based Z-Scheme BiOCl-Au-CdS Photoelectrochemical Biodetection. Zeng R; Luo Z; Su L; Zhang L; Tang D; Niessner R; Knopp D Anal Chem; 2019 Feb; 91(3):2447-2454. PubMed ID: 30609356 [TBL] [Abstract][Full Text] [Related]
15. Surface-enhanced Raman spectroscopy relying on bimetallic Au-Ag nanourchins for the detection of the food allergen β-lactoglobulin. Duan N; Yao T; Li C; Wang Z; Wu S Talanta; 2022 Aug; 245():123445. PubMed ID: 35405446 [TBL] [Abstract][Full Text] [Related]
16. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots. Shi M; Cen Y; Sohail M; Xu G; Wei F; Ma Y; Xu X; Ma Y; Song Y; Hu Q Mikrochim Acta; 2017 Dec; 185(1):40. PubMed ID: 29594678 [TBL] [Abstract][Full Text] [Related]
17. A rapid and sensitive aptamer-based biosensor for beta-lactoglobulin in milk. Liu A; Jiang M; Wu Y; Guo H; Kong L; Chen Z; Luo Z Anal Methods; 2024 May; 16(19):3039-3046. PubMed ID: 38682261 [TBL] [Abstract][Full Text] [Related]
18. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive electrochemical detection of protein tyrosine kinase-7 by gold nanoparticles and methylene blue assisted signal amplification. Miao X; Li Z; Zhu A; Feng Z; Tian J; Peng X Biosens Bioelectron; 2016 Sep; 83():39-44. PubMed ID: 27101533 [TBL] [Abstract][Full Text] [Related]
20. Novel electrochemical dual-aptamer-based sandwich biosensor using molybdenum disulfide/carbon aerogel composites and Au nanoparticles for signal amplification. Fang LX; Huang KJ; Liu Y Biosens Bioelectron; 2015 Sep; 71():171-178. PubMed ID: 25909336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]