These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 32475401)

  • 1. 4-Cyanoindole-based fluorophores for biological spectroscopy and microscopy.
    Acharyya A; Ahmed IA; Gai F
    Methods Enzymol; 2020; 639():191-215. PubMed ID: 32475401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Cyanoindole-2'-deoxyribonucleoside as a Dual Fluorescence and Infrared Probe of DNA Structure and Dynamics.
    Ahmed IA; Acharyya A; Eng CM; Rodgers JM; DeGrado WF; Jo H; Gai F
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30744004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid.
    Fong KP; Ahmed IA; Mravic M; Jo H; Kim OV; Litvinov RI; Weisel JW; DeGrado WF; Gai F; Bennett JS
    Biochemistry; 2021 Jun; 60(21):1722-1730. PubMed ID: 34010565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blue fluorescent amino acid for biological spectroscopy and microscopy.
    Hilaire MR; Ahmed IA; Lin CW; Jo H; DeGrado WF; Gai F
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):6005-6009. PubMed ID: 28533371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 4-Cyanotryptophan as a Sensitive Fluorescence Probe of Local Electric Field of Proteins.
    Yang Y; Feng RR; Gai F
    J Phys Chem B; 2023 Jan; 127(2):514-519. PubMed ID: 36598839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyano-tryptophans as dual infrared and fluorescence spectroscopic labels to assess structural dynamics in proteins.
    van Wilderen LJGW; Brunst H; Gustmann H; Wachtveitl J; Broos J; Bredenbeck J
    Phys Chem Chem Phys; 2018 Aug; 20(30):19906-19915. PubMed ID: 30019716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan as a Template for Development of Visible Fluorescent Amino Acids.
    Acharyya A; Zhang W; Gai F
    J Phys Chem B; 2021 Jun; 125(21):5458-5465. PubMed ID: 34029101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET and FRET utility of an amino acid pair: tryptophan and 4-cyanotryptophan.
    Ahmed IA; Rodgers JM; Eng C; Troxler T; Gai F
    Phys Chem Chem Phys; 2019 Jun; 21(24):12843-12849. PubMed ID: 31179453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and application of the blue fluorescent amino acid l-4-cyanotryptophan to assess peptide-membrane interactions.
    Zhang K; Ahmed IA; Kratochvil HT; DeGrado WF; Gai F; Jo H
    Chem Commun (Camb); 2019 Apr; 55(35):5095-5098. PubMed ID: 30957824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of 5-Cyanotryptophan Fluorescence as a Sensitive Probe of Protein Hydration.
    Markiewicz BN; Mukherjee D; Troxler T; Gai F
    J Phys Chem B; 2016 Feb; 120(5):936-44. PubMed ID: 26783936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan-based fluorophores for studying protein conformational changes.
    Talukder P; Chen S; Liu CT; Baldwin EA; Benkovic SJ; Hecht SM
    Bioorg Med Chem; 2014 Nov; 22(21):5924-34. PubMed ID: 25284250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein labeling for FRET with methoxycoumarin and acridonylalanine.
    Jones CM; Venkatesh Y; Petersson EJ
    Methods Enzymol; 2020; 639():37-69. PubMed ID: 32475410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 4-Cyanoindole Nucleosides, 4-Cyanoindole-2'-Deoxyribonucleoside-5'-Triphosphate (4CIN-TP), and Enzymatic Incorporation of 4CIN-TP into DNA.
    Passow KT; Antczak NM; Sturla SJ; Harki DA
    Curr Protoc Nucleic Acid Chem; 2020 Mar; 80(1):e101. PubMed ID: 31909864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photostable and photoswitching fluorescent dyes for super-resolution imaging.
    Minoshima M; Kikuchi K
    J Biol Inorg Chem; 2017 Jul; 22(5):639-652. PubMed ID: 28083655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule super-resolution imaging by tryptophan-quenching-induced photoswitching of phalloidin-fluorophore conjugates.
    Nanguneri S; Flottmann B; Herrmannsdörfer F; Thomas K; Heilemann M
    Microsc Res Tech; 2014 Jul; 77(7):510-6. PubMed ID: 24595992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photophysical Properties of Noncanonical Amino Acid 7-Fluorotryptophan Sharply Different from Those of Canonical Derivative Tryptophan: Spectroscopic and Quantum Chemical Calculations.
    Nandy T; Singh PC
    J Phys Chem B; 2021 Jun; 125(23):6214-6221. PubMed ID: 34081478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cotranslational Incorporation into Proteins of a Fluorophore Suitable for smFRET Studies.
    Sadoine M; Cerminara M; Gerrits M; Fitter J; Katranidis A
    ACS Synth Biol; 2018 Feb; 7(2):405-411. PubMed ID: 29370697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tryptophan 19 residue is the origin of bovine β-lactoglobulin fluorescence.
    Albani JR; Vogelaer J; Bretesche L; Kmiecik D
    J Pharm Biomed Anal; 2014 Mar; 91():144-50. PubMed ID: 24463042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective recognition of tryptophan by a methylpillar[5]arene-based supramolecular fuorescent probe.
    Zhu X; Zhao J; Dai F; Xu W; Chen L; Xiao X; Tao Z; Zhang C
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Apr; 250():119381. PubMed ID: 33422874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery, understanding, and bioapplication of organic fluorophore: a case study with an indolizine-based novel fluorophore, Seoul-Fluor.
    Kim E; Lee Y; Lee S; Park SB
    Acc Chem Res; 2015 Mar; 48(3):538-47. PubMed ID: 25695375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.