BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32475543)

  • 1. Acetic acid reducing the softening of lotus rhizome during heating by regulating the chelate-soluble polysaccharides.
    Liu G; Liu Y; Yan S; Li J
    Carbohydr Polym; 2020 Jul; 240():116209. PubMed ID: 32475543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The ratio of chelate-soluble fraction to alcohol insoluble residue is a major influencing factor on the texture of lotus rhizomes after cooking.
    Liu G; Li X; Yan S; Li J
    Food Chem; 2019 May; 279():373-378. PubMed ID: 30611503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetic acid pretreatment improves the hardness of cooked potato slices.
    Zhao W; Shehzad H; Yan S; Li J; Wang Q
    Food Chem; 2017 Aug; 228():204-210. PubMed ID: 28317714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of pectin-cellulose interaction in cell wall of lotus rhizome with assistance of ball-milling and galactosidase.
    Liu Y; Yan S; Li B; Li J
    Int J Biol Macromol; 2023 Aug; 246():125615. PubMed ID: 37391001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium bicarbonate reduces the cooked hardness of lotus rhizome via side chain rearrangement and pectin degradation.
    Liu Y; Liu J; Liu G; Duan R; Sun Y; Li J; Yan S; Li B
    Food Chem; 2022 Feb; 370():130962. PubMed ID: 34555774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in physicochemical properties related to the texture of lotus rhizomes subjected to heat blanching and calcium immersion.
    Zhao W; Xie W; Du S; Yan S; Li J; Wang Q
    Food Chem; 2016 Nov; 211():409-14. PubMed ID: 27283649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification.
    Deng LZ; Mujumdar AS; Yang XH; Wang J; Zhang Q; Zheng ZA; Gao ZJ; Xiao HW
    Food Chem; 2018 Sep; 261():292-300. PubMed ID: 29739596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure, rheological, thermal and antioxidant properties of cell wall polysaccharides from Chinese quince fruits.
    Qin Z; Liu HM; Lv TT; Wang XD
    Int J Biol Macromol; 2020 Mar; 147():1146-1155. PubMed ID: 31726165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetic Acid Immersion Alleviates the Softening of Cooked
    Sun Y; Liu Y; Li J; Yan S
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharide compositions of collenchyma cell walls from celery (Apium graveolens L.) petioles.
    Chen D; Harris PJ; Sims IM; Zujovic Z; Melton LD
    BMC Plant Biol; 2017 Jun; 17(1):104. PubMed ID: 28619057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism for gel formation of pectin from mealy and crisp lotus rhizome induced by Na
    Duan R; Liu Y; Li J; Yan S
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127818. PubMed ID: 37918602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca).
    Liu H; Chen F; Lai S; Tao J; Yang H; Jiao Z
    Food Chem; 2017 Jun; 225():87-97. PubMed ID: 28193437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure processing improves the texture quality of fermented minced pepper by maintaining pectin characteristics during storage.
    Chen F; Chen Y; Wang Y; Ding S; Qin Y; Jiang L; Wang R
    J Food Sci; 2022 Jun; 87(6):2427-2439. PubMed ID: 35590481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influences of Soaking Temperature and Storage Conditions on Hardening of Soybeans (Glycine max) and Red Kidney Beans (Phaseolus vulgaris).
    Koriyama T; Sato Y; Iijima K; Kasai M
    J Food Sci; 2017 Jul; 82(7):1546-1556. PubMed ID: 28585693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study on the structure, antioxidant activity and degradation pattern of polysaccharides isolated from lotus seedpod.
    Yuan S; Wang J; Li X; Zhu X; Zhang Z; Li D
    Carbohydr Polym; 2023 Sep; 316():121065. PubMed ID: 37321745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and characterization of biodegradable films from whey protein concentrate, psyllium husk and oxidized, crosslinked, dual-modified lotus rhizome starch composite.
    Sukhija S; Singh S; Riar CS
    J Sci Food Agric; 2019 May; 99(7):3398-3409. PubMed ID: 30609039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on the formation mechanism of blackening in damaged lotus rhizome epidermis: Effects of polyphenols and iron.
    Chen X; Huang S; Yan S; Li J
    J Food Sci; 2024 Jun; 89(6):3554-3568. PubMed ID: 38660920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage.
    Lin Y; Lin Y; Lin H; Lin M; Li H; Yuan F; Chen Y; Xiao J
    Food Chem; 2018 Oct; 264():1-8. PubMed ID: 29853352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural compositions and biological activities of cell wall polysaccharides in the rhizome, stem, and leaf of Polygonatum odoratum (Mill.) Druce.
    Li J; Hsiung SY; Kao MR; Xing X; Chang SC; Wang D; Hsieh PY; Liang PH; Zhu Z; Cheng TR; Shie JJ; Liou JP; Abbott DW; Kwon SW; Hsieh YSY
    Carbohydr Res; 2022 Nov; 521():108662. PubMed ID: 36099721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of cell wall polysaccharides from okra (Abelmoschus esculentus (L.) Moench).
    Sengkhamparn N; Verhoef R; Schols HA; Sajjaanantakul T; Voragen AG
    Carbohydr Res; 2009 Sep; 344(14):1824-32. PubMed ID: 19061990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.