These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32475571)

  • 1. Solid state 13C-NMR methodology for the cellulose composition studies of the shells of Prunus dulcis and their derived cellulosic materials.
    Modica A; Rosselli S; Catinella G; Sottile F; Catania CA; Cavallaro G; Lazzara G; Botta L; Spinella A; Bruno M
    Carbohydr Polym; 2020 Jul; 240():116290. PubMed ID: 32475571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiproduct biorefinery based on almond shells: Impact of the delignification stage on the manufacture of valuable products.
    Morales A; Hernández-Ramos F; Sillero L; Fernández-Marín R; Dávila I; Gullón P; Erdocia X; Labidi J
    Bioresour Technol; 2020 Nov; 315():123896. PubMed ID: 32726745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistage treatment of almonds waste biomass: Characterization and assessment of the potential applications of raw material and products.
    de Hoyos-Martínez PL; Erdocia X; Charrier-El Bouhtoury F; Prado R; Labidi J
    Waste Manag; 2018 Oct; 80():40-50. PubMed ID: 30455022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shell cracking strength in almond (Prunus dulcis [Mill.] D.A. Webb.) and its implication in uses as a value-added product.
    Ledbetter CA
    Bioresour Technol; 2008 Sep; 99(13):5567-73. PubMed ID: 18082397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved production and characterization of a highly stable laccase from the halophilic bacterium Chromohalobacter salexigens for the efficient delignification of almond shell bio-waste.
    Jafari N; Rezaei S; Rezaie R; Dilmaghani H; Khoshayand MR; Faramarzi MA
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):489-498. PubMed ID: 28709895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Almonds (
    Barreca D; Nabavi SM; Sureda A; Rasekhian M; Raciti R; Silva AS; Annunziata G; Arnone A; Tenore GC; Süntar İ; Mandalari G
    Nutrients; 2020 Mar; 12(3):. PubMed ID: 32121549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Almond (
    Tomishima H; Luo K; Mitchell AE
    Annu Rev Food Sci Technol; 2022 Mar; 13():145-166. PubMed ID: 34936815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hand-made paper obtained by green procedure of cladode waste of
    Sottile F; Modica A; Rosselli S; Catania CA; Cavallaro G; Lazzara G; Bruno M
    Nat Prod Res; 2021 Feb; 35(3):359-368. PubMed ID: 31219358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for recovery of cellulose from lignocellulosic bio-waste: Pile processing.
    Tezcan E; Atıcı OG
    Waste Manag; 2017 Dec; 70():181-188. PubMed ID: 28941570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of the association between cellulose and lignin by carbon 13 tracer method].
    Xiang SM; Xie YM; Yang HT; Yao L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2488-91. PubMed ID: 24369658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HR-LC-ESI-Orbitrap-MS based metabolite profiling of Prunus dulcis Mill. (Italian cultivars Toritto and Avola) husks and evaluation of antioxidant activity.
    Bottone A; Masullo M; Montoro P; Pizza C; Piacente S
    Phytochem Anal; 2019 Jul; 30(4):415-423. PubMed ID: 30762260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of stilbenes in California almonds (Prunus dulcis) by UHPLC-MS.
    Xie L; Bolling BW
    Food Chem; 2014 Apr; 148():300-6. PubMed ID: 24262561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cultivation of black soldier fly larvae on almond byproducts: impacts of aeration and moisture on larvae growth and composition.
    Palma L; Ceballos SJ; Johnson PC; Niemeier D; Pitesky M; VanderGheynst JS
    J Sci Food Agric; 2018 Dec; 98(15):5893-5900. PubMed ID: 29999178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of degraded cellulose obtained from steam-exploded wheat straw.
    Sun XF; Xu F; Sun RC; Fowler P; Baird MS
    Carbohydr Res; 2005 Jan; 340(1):97-106. PubMed ID: 15620672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingolipid and other constituents from almond nuts (Prunus amygdalus Batsch).
    Sang S; Kikuzaki H; Lapsley K; Rosen RT; Nakatani N; Ho CT
    J Agric Food Chem; 2002 Jul; 50(16):4709-12. PubMed ID: 12137501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining the Sensory Profiles of Raw Almond ( Prunus dulcis) Varieties and the Contribution of Key Chemical Compounds and Physical Properties.
    King ES; Chapman DM; Luo K; Ferris S; Huang G; Mitchell AE
    J Agric Food Chem; 2019 Mar; 67(11):3229-3241. PubMed ID: 30798590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cherry Seed-Derived Spice, Mahleb, is Recognized by Anti-Almond Antibodies Including Almond-Allergic Patient IgE.
    Noble KA; Liu C; Sathe SK; Roux KH
    J Food Sci; 2017 Aug; 82(8):1786-1791. PubMed ID: 28627716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure.
    Foston MB; Hubbell CA; Ragauskas AJ
    Materials (Basel); 2011 Nov; 4(11):1985-2002. PubMed ID: 28824119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the chemical and nutritional characteristics of almonds (Prunus dulcis (Mill). D.A. Webb) as influenced by harvest time and cultivar.
    Summo C; Palasciano M; De Angelis D; Paradiso VM; Caponio F; Pasqualone A
    J Sci Food Agric; 2018 Dec; 98(15):5647-5655. PubMed ID: 29708600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state NMR method for the quantification of cellulose and polyester in textile blends.
    Haslinger S; Hietala S; Hummel M; Maunu SL; Sixta H
    Carbohydr Polym; 2019 Mar; 207():11-16. PubMed ID: 30599991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.