These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32475598)

  • 1. Evaluation of artificial crystalline structure from amylose analog polysaccharide without hydroxy groups at C-2 position.
    Uto T; Nakamura S; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2020 Jul; 240():116347. PubMed ID: 32475598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double helix formation from non-natural amylose analog polysaccharides.
    Yui T; Uto T; Nakauchida T; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2018 Jun; 189():184-189. PubMed ID: 29580397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic synthesis of functional amylosic materials and amylose analog polysaccharides.
    Kadokawa JI
    Methods Enzymol; 2019; 627():189-213. PubMed ID: 31630740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microsecond kinetics in model single- and double-stranded amylose polymers.
    Sattelle BM; Almond A
    Phys Chem Chem Phys; 2014 May; 16(17):8119-26. PubMed ID: 24652085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amylose-grafted Curdlan: A New Class of Semi-artificial Branched Polysaccharides for Hierarchical Polymeric Superstructures Created by the Action of "Orthogonal" Binding Sites.
    Tamaru SI; Honzaki M; Kamogawa K; Hori K; Kubo M; Kuroda N; Shinkai S
    Chem Asian J; 2019 Jun; 14(12):2102-2107. PubMed ID: 30997743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of microparticles from amylose-grafted poly(γ-glutamic acid) networks obtained by thermostable phosphorylase-catalyzed enzymatic polymerization.
    Kadokawa JI; Orio S; Yamamoto K
    RSC Adv; 2019 May; 9(28):16176-16182. PubMed ID: 35521363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions.
    Kadokawa JI
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal expansion behavior of A- and B-type amylose crystals in the low-temperature region.
    Kobayashi K; Kimura S; Naito PK; Togawa E; Wada M
    Carbohydr Polym; 2015 Oct; 131():399-406. PubMed ID: 26256200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vine-twining polymerization: amylose twines around polyethers to form amylose-polyether inclusion complexes.
    Kadokawa J; Kaneko Y; Nagase S; Takahashi T; Tagaya H
    Chemistry; 2002 Aug; 8(15):3321-6. PubMed ID: 12203312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water.
    Cheng L; Feng T; Zhang B; Zhu X; Hamaker B; Zhang H; Campanella O
    Carbohydr Polym; 2018 Sep; 196():56-65. PubMed ID: 29891324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoenzyamtic synthesis and self-assembling gelation behavior of amylose-grafted poly(γ-glutamic acid).
    Shouji T; Yamamoto K; Kadokawa JI
    Int J Biol Macromol; 2017 Apr; 97():99-105. PubMed ID: 28064054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy.
    Zhang Q; Lu Z; Hu H; Yang W; Marszalek PE
    J Am Chem Soc; 2006 Jul; 128(29):9387-93. PubMed ID: 16848474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Assembly of Chitosan-Based Network Polysaccharides and Their Encapsulation and Release of Fluorescent Dye.
    Totani M; Nakamichi A; Kadokawa JI
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of amylose-grafted carboxymethyl cellulose.
    Kadokawa J; Arimura T; Takemoto Y; Yamamoto K
    Carbohydr Polym; 2012 Oct; 90(3):1371-7. PubMed ID: 22939353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vine-Twining Inclusion Behavior of Amylose towards Hydrophobic Polyester, Poly(β-propiolactone), in Glucan Phosphorylase-Catalyzed Enzymatic Polymerization.
    Iwamoto MA; Kadokawa JI
    Life (Basel); 2023 Jan; 13(2):. PubMed ID: 36836651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability.
    Le Bail P; Rondeau C; Buléon A
    Int J Biol Macromol; 2005 Mar; 35(1-2):1-7. PubMed ID: 15769508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal and molecular structure of VH amylose by electron diffraction analysis.
    Brisson J; Chanzy H; Winter WT
    Int J Biol Macromol; 1991 Feb; 13(1):31-9. PubMed ID: 2059581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The double-helical nature of the crystalline part of A-starch.
    Imberty A; Chanzy H; Pérez S; Buléon A; Tran V
    J Mol Biol; 1988 May; 201(2):365-78. PubMed ID: 3418703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.