These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32475768)

  • 1. Assessment of heat generation and risk of thermal necrosis during bone burring by means of three-dimensional dynamic elastoplastic finite element modelling.
    Chen YC; Hsiao CK; Tu YK; Tsai YJ; Hsiao AC; Lu CW; Yang CY
    Med Eng Phys; 2020 Jul; 81():1-12. PubMed ID: 32475768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Safe Is High-Speed Burring in Spine Surgery? An In Vitro Study on the Effect of Rotational Speed and Heat Generation in the Bovine Spine.
    Singh TS; Yusoff AH; Chian YK
    Spine (Phila Pa 1976); 2015 Aug; 40(15):E866-72. PubMed ID: 25996539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters.
    Chen YC; Tu YK; Tsai YJ; Tsai YS; Yen CY; Yang SC; Hsiao CK
    Comput Methods Programs Biomed; 2018 Aug; 162():253-261. PubMed ID: 29903492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.
    Chen YC; Tu YK; Zhuang JY; Tsai YJ; Yen CY; Hsiao CK
    Med Biol Eng Comput; 2017 Nov; 55(11):1949-1957. PubMed ID: 28353132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the process parameters affecting the bone burring process: An in-vitro porcine study.
    Kusins JR; Tutunea-Fatan OR; Athwal GS; Ferreira LM
    Int J Med Robot; 2019 Oct; 15(5):e2028. PubMed ID: 31368216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling.
    Aydın K; Ökten K; Uğur L
    Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal parameters to avoid thermal necrosis during bone drilling: A finite element analysis.
    Mediouni M; Schlatterer DR; Khoury A; Von Bergen T; Shetty SH; Arora M; Dhond A; Vaughan N; Volosnikov A
    J Orthop Res; 2017 Nov; 35(11):2386-2391. PubMed ID: 28181707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.
    Shakouri E; Sadeghi MH; Maerefat M; Shajari S
    Proc Inst Mech Eng H; 2014 Apr; 228(4):330-41. PubMed ID: 24569922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone.
    Wang Y; Cao M; Zhao X; Zhu G; McClean C; Zhao Y; Fan Y
    Med Eng Phys; 2014 Nov; 36(11):1408-15. PubMed ID: 24908355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental analysis of the process parameters affecting bone burring operations.
    Kusins JR; Tutunea-Fatan OR; Ferreira LM
    Proc Inst Mech Eng H; 2018 Jan; 232(1):33-44. PubMed ID: 29148312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro experimental analysis and numerical study of temperature in bone drilling.
    Alam K; Khan M; Muhammad R; Qamar SZ; Silberschmidt VV
    Technol Health Care; 2015; 23(6):775-83. PubMed ID: 26409522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of thermal aspects of high-speed drilling of bone by theoretical and experimental approaches.
    Shakouri E; Ghorbani Nezhad M; Ghorbani P; Khosravi-Nejad F
    Phys Eng Sci Med; 2020 Sep; 43(3):959-972. PubMed ID: 32632571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro study of thermal necrosis in ultrasonic-assisted drilling of bone.
    Shakouri E; Sadeghi MH; Karafi MR; Maerefat M; Farzin M
    Proc Inst Mech Eng H; 2015 Feb; 229(2):137-49. PubMed ID: 25767150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of drilling parameters for thermal bone necrosis prevention.
    Akhbar MFA; Yusoff AR
    Technol Health Care; 2018; 26(4):621-635. PubMed ID: 29966212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of process parameters on the temperature changes during robotic bone drilling.
    Han Y; Cai C; Lv Q; Song Y; Zhang Q
    Proc Inst Mech Eng H; 2022 Aug; 236(8):1129-1138. PubMed ID: 35821641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation and statistical modeling of temperature rise in rotary ultrasonic bone drilling.
    Gupta V; Pandey PM
    Med Eng Phys; 2016 Nov; 38(11):1330-1338. PubMed ID: 27639655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction thermal damage to cortical bone using ultrasonically-assisted drilling.
    Zheng Q; Xia L; Zhang X; Zhang C; Hu Y
    Technol Health Care; 2018; 26(5):843-856. PubMed ID: 30103355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotary ultrasonic drilling on bone: A novel technique to put an end to thermal injury to bone.
    Gupta V; Pandey PM; Gupta RK; Mridha AR
    Proc Inst Mech Eng H; 2017 Mar; 231(3):189-196. PubMed ID: 28116985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature elevations in orthopaedic cutting operations.
    Krause WR; Bradbury DW; Kelly JE; Lunceford EM
    J Biomech; 1982; 15(4):267-75. PubMed ID: 7096382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new thermal model for bone drilling with applications to orthopaedic surgery.
    Lee J; Rabin Y; Ozdoganlar OB
    Med Eng Phys; 2011 Dec; 33(10):1234-44. PubMed ID: 21803638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.