These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 32475995)
1. Iron and iron-bound phosphate accumulate in surface soils of ice-wedge polygons in arctic tundra. Herndon E; Kinsman-Costello L; Di Domenico N; Duroe K; Barczok M; Smith C; Wullschleger SD Environ Sci Process Impacts; 2020 Jul; 22(7):1475-1490. PubMed ID: 32475995 [TBL] [Abstract][Full Text] [Related]
2. Phosphorus Interactions with Iron in Undisturbed and Disturbed Arctic Tundra Ecosystems. Berens MJ; Michaud AB; VanderJeugdt E; Miah I; Sutor FW; Emerson D; Bowden WB; Kinsman-Costello L; Weintraub MN; Herndon EM Environ Sci Technol; 2024 Jul; 58(26):11400-11410. PubMed ID: 38889135 [TBL] [Abstract][Full Text] [Related]
3. Stoichiometry and temperature sensitivity of methanogenesis and CO2 production from saturated polygonal tundra in Barrow, Alaska. Roy Chowdhury T; Herndon EM; Phelps TJ; Elias DA; Gu B; Liang L; Wullschleger SD; Graham DE Glob Chang Biol; 2015 Feb; 21(2):722-37. PubMed ID: 25308891 [TBL] [Abstract][Full Text] [Related]
4. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils. Lipson DA; Raab TK; Parker M; Kelley ST; Brislawn CJ; Jansson J Environ Microbiol Rep; 2015 Aug; 7(4):649-57. PubMed ID: 26034016 [TBL] [Abstract][Full Text] [Related]
5. From sinks to sources: The role of Fe oxyhydroxide transformations on phosphorus dynamics in estuarine soils. Queiroz HM; Ferreira TO; Barcellos D; Nóbrega GN; Antelo J; Otero XL; Bernardino AF J Environ Manage; 2021 Jan; 278(Pt 2):111575. PubMed ID: 33147526 [TBL] [Abstract][Full Text] [Related]
6. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula. Lara MJ; McGuire AD; Euskirchen ES; Tweedie CE; Hinkel KM; Skurikhin AN; Romanovsky VE; Grosse G; Bolton WR; Genet H Glob Chang Biol; 2015 Apr; 21(4):1634-51. PubMed ID: 25258295 [TBL] [Abstract][Full Text] [Related]
7. Long-term recovery patterns of arctic tundra after winter seismic exploration. Jorgenson JC; Ver Hoef JM; Jorgenson MT Ecol Appl; 2010 Jan; 20(1):205-21. PubMed ID: 20349841 [TBL] [Abstract][Full Text] [Related]
8. Characterization of iron oxide nanoparticle films at the air-water interface in Arctic tundra waters. Jubb AM; Eskelsen JR; Yin X; Zheng J; Philben MJ; Pierce EM; Graham DE; Wullschleger SD; Gu B Sci Total Environ; 2018 Aug; 633():1460-1468. PubMed ID: 29758898 [TBL] [Abstract][Full Text] [Related]
10. Temporal, Spatial, and Temperature Controls on Organic Carbon Mineralization and Methanogenesis in Arctic High-Centered Polygon Soils. Roy Chowdhury T; Berns EC; Moon JW; Gu B; Liang L; Wullschleger SD; Graham DE Front Microbiol; 2020; 11():616518. PubMed ID: 33505383 [TBL] [Abstract][Full Text] [Related]
11. X-ray absorption near edge structure spectroscopy reveals phosphate minerals at surface and agronomic sampling depths in agricultural Ultisols saturated with legacy phosphorus. Lucas E; Mosesso L; Roswall T; Yang YY; Scheckel K; Shober A; Toor GS Chemosphere; 2022 Dec; 308(Pt 2):136288. PubMed ID: 36058369 [TBL] [Abstract][Full Text] [Related]
12. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra. Kim HM; Lee MJ; Jung JY; Hwang CY; Kim M; Ro HM; Chun J; Lee YK J Microbiol; 2016 Nov; 54(11):713-723. PubMed ID: 27796925 [TBL] [Abstract][Full Text] [Related]
13. Microbial community composition and function across an arctic tundra landscape. Zak DR; Kling GW Ecology; 2006 Jul; 87(7):1659-70. PubMed ID: 16922317 [TBL] [Abstract][Full Text] [Related]
14. Organohalide-Respiring Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils. Lipson DA; Raab TK; Pérez Castro S; Powell A Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187999 [TBL] [Abstract][Full Text] [Related]
15. Examining mineral-associated soil organic matter pools through depth in harvested forest soil profiles. Gabriel CE; Kellman L; Prest D PLoS One; 2018; 13(11):e0206847. PubMed ID: 30452448 [TBL] [Abstract][Full Text] [Related]
16. Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. Beauchemin S; Hesterberg D; Chou J; Beauchemin M; Simard RR; Sayers DE J Environ Qual; 2003; 32(5):1809-19. PubMed ID: 14535324 [TBL] [Abstract][Full Text] [Related]
17. Distinct Taxonomic and Functional Profiles of the Microbiome Associated With Different Soil Horizons of a Moist Tussock Tundra in Alaska. Tripathi BM; Kim HM; Jung JY; Nam S; Ju HT; Kim M; Lee YK Front Microbiol; 2019; 10():1442. PubMed ID: 31316487 [TBL] [Abstract][Full Text] [Related]
18. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Sato S; Solomon D; Hyland C; Ketterings QM; Lehmann J Environ Sci Technol; 2005 Oct; 39(19):7485-91. PubMed ID: 16245819 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus K-edge XANES spectroscopy has probably often underestimated iron oxyhydroxide-bound P in soils. Prietzel J; Klysubun W J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1736-1744. PubMed ID: 30407184 [TBL] [Abstract][Full Text] [Related]
20. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables. Zhu R; Ma D; Ding W; Bai B; Liu Y; Sun J Sci Total Environ; 2011 Sep; 409(19):3789-800. PubMed ID: 21762959 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]