These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32476039)
1. Colorimetric determination of cysteine by a paper-based assay system using aspartic acid modified gold nanoparticles. Liu C; Miao Y; Zhang X; Zhang S; Zhao X Mikrochim Acta; 2020 May; 187(6):362. PubMed ID: 32476039 [TBL] [Abstract][Full Text] [Related]
2. A paper-based point-of-care device for the detection of cysteine using gold nanoparticles from whole blood. Kumari M; Kumar N; Kumar S; Gandhi S; Zussman E; Arun RK Anal Methods; 2024 May; 16(19):3007-3019. PubMed ID: 38695537 [TBL] [Abstract][Full Text] [Related]
3. A Simple and Green Route for Room-Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Bagci PO; Wang YC; Gunasekaran S J Food Sci; 2015 Sep; 80(9):N2071-8. PubMed ID: 26239641 [TBL] [Abstract][Full Text] [Related]
4. Silicon quantum dot-coated onto gold nanoparticles as an optical probe for colorimetric and fluorometric determination of cysteine. Liu L; Zhu G; Zeng W; Yi Y; Lv B; Qian J; Zhang D Mikrochim Acta; 2019 Jan; 186(2):98. PubMed ID: 30631943 [TBL] [Abstract][Full Text] [Related]
5. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles. Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441 [TBL] [Abstract][Full Text] [Related]
6. Colorimetric sensing of selenocystine using gold nanoparticles. Liu L; Wang X; Yang J; Bai Y Anal Biochem; 2017 Oct; 535():19-24. PubMed ID: 28739132 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric aggregation assay for kanamycin using gold nanoparticles modified with hairpin DNA probes and hybridization chain reaction-assisted amplification. Xu C; Ying Y; Ping J Mikrochim Acta; 2019 Jun; 186(7):448. PubMed ID: 31197488 [TBL] [Abstract][Full Text] [Related]
9. A fluorometric and colorimetric method for determination of trypsin by exploiting the gold nanocluster-induced aggregation of hemoglobin-coated gold nanoparticles. Zhou Z; Liu W; Wang Y; Ding F; Liu X; Zhao Q; Zou P; Wang X; Rao H Mikrochim Acta; 2019 Apr; 186(5):272. PubMed ID: 30963286 [TBL] [Abstract][Full Text] [Related]
10. Colorimetric determination of fumonisin B1 based on the aggregation of cysteamine-functionalized gold nanoparticles induced by a product of its hydrolysis. Chotchuang T; Cheewasedtham W; Jayeoye TJ; Rujiralai T Mikrochim Acta; 2019 Aug; 186(9):655. PubMed ID: 31463772 [TBL] [Abstract][Full Text] [Related]
11. Colorimetric detection of L-histidine based on the target-triggered self-cleavage of swing-structured DNA duplex-induced aggregation of gold nanoparticles. Jiao Y; Liu Q; Qiang H; Chen Z Mikrochim Acta; 2018 Sep; 185(10):452. PubMed ID: 30209628 [TBL] [Abstract][Full Text] [Related]
12. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection. Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375 [TBL] [Abstract][Full Text] [Related]
13. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771 [TBL] [Abstract][Full Text] [Related]
14. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes. Li L; Li B Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric discrimination and spectroscopic detection of tyrosine enantiomers based on melamine induced aggregation of l-cysteine/Au nanoparticles. Chen H; Luo Y; Cai W; Xu L; Li J; Kong Y Talanta; 2024 May; 271():125758. PubMed ID: 38340415 [TBL] [Abstract][Full Text] [Related]
16. Colorimetric detection of melamine in milk based on Triton X-100 modified gold nanoparticles and its paper-based application. Gao N; Huang P; Wu F Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():174-180. PubMed ID: 29136582 [TBL] [Abstract][Full Text] [Related]
17. Colorimetric theophylline aggregation assay using an RNA aptamer and non-crosslinking gold nanoparticles. Ma X; Guo Z; Mao Z; Tang Y; Miao P Mikrochim Acta; 2017 Dec; 185(1):33. PubMed ID: 29594625 [TBL] [Abstract][Full Text] [Related]
18. Colorimetric and energy transfer based fluorometric turn-on method for determination of microRNA using silver nanoclusters and gold nanoparticles. Borghei YS; Hosseini M; Ganjali MR; Ju H Mikrochim Acta; 2018 May; 185(6):286. PubMed ID: 29737423 [TBL] [Abstract][Full Text] [Related]
19. Colorimetric and smartphone-integrated paper device for on-site determination of arsenic (III) using sucrose modified gold nanoparticles as a nanoprobe. Shrivas K; Patel S; Sinha D; Thakur SS; Patle TK; Kant T; Dewangan K; Satnami ML; Nirmalkar J; Kumar S Mikrochim Acta; 2020 Feb; 187(3):173. PubMed ID: 32072273 [TBL] [Abstract][Full Text] [Related]
20. Colorimetric detection of melamine in milk by citrate-stabilized gold nanoparticles. Kumar N; Seth R; Kumar H Anal Biochem; 2014 Jul; 456():43-9. PubMed ID: 24727351 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]