These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 32476048)
21. Development of agomelatine nanocomposite formulations by wet media milling. Vardaka E; Andreas O; Nikolakakis I; Kachrimanis K Eur J Pharm Sci; 2021 Nov; 166():105979. PubMed ID: 34425232 [TBL] [Abstract][Full Text] [Related]
22. An Intensified Vibratory Milling Process for Enhancing the Breakage Kinetics during the Preparation of Drug Nanosuspensions. Li M; Zhang L; Davé RN; Bilgili E AAPS PharmSciTech; 2016 Apr; 17(2):389-99. PubMed ID: 26182907 [TBL] [Abstract][Full Text] [Related]
23. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation. Hong C; Dang Y; Lin G; Yao Y; Li G; Ji G; Shen H; Xie Y Int J Pharm; 2014 Dec; 477(1-2):251-60. PubMed ID: 25445518 [TBL] [Abstract][Full Text] [Related]
24. Development and evaluation of optimized sucrose ester stabilized oleanolic acid nanosuspensions prepared by wet ball milling with design of experiments. Li W; Ng KY; Heng PW Biol Pharm Bull; 2014; 37(6):926-37. PubMed ID: 24882406 [TBL] [Abstract][Full Text] [Related]
25. Nanosuspensions Containing Oridonin/HP-β-Cyclodextrin Inclusion Complexes for Oral Bioavailability Enhancement via Improved Dissolution and Permeability. Zhang X; Zhang T; Lan Y; Wu B; Shi Z AAPS PharmSciTech; 2016 Apr; 17(2):400-8. PubMed ID: 26187778 [TBL] [Abstract][Full Text] [Related]
26. Enhanced Solubility and Dissolution Rate of Lacidipine Nanosuspension: Formulation Via Antisolvent Sonoprecipitation Technique and Optimization Using Box-Behnken Design. Kassem MAA; ElMeshad AN; Fares AR AAPS PharmSciTech; 2017 May; 18(4):983-996. PubMed ID: 27506564 [TBL] [Abstract][Full Text] [Related]
27. Nanocrystal-based drug delivery system of risperidone: lyophilization and characterization. Gol D; Thakkar S; Misra M Drug Dev Ind Pharm; 2018 Sep; 44(9):1458-1466. PubMed ID: 29619857 [TBL] [Abstract][Full Text] [Related]
28. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Bitterlich A; Laabs C; Krautstrunk I; Dengler M; Juhnke M; Grandeury A; Bunjes H; Kwade A Eur J Pharm Biopharm; 2015 May; 92():171-9. PubMed ID: 25766272 [TBL] [Abstract][Full Text] [Related]
29. Solid Dispersions Obtained by Ball Milling as Delivery Platform of Etodolac, a Model Poorly Soluble Drug. Czajkowska-Kośnik A; Misztalewska-Turkowicz I; Wilczewska AZ; Basa A; Winnicka K Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203102 [TBL] [Abstract][Full Text] [Related]
30. A microhydrodynamic rationale for selection of bead size in preparation of drug nanosuspensions via wet stirred media milling. Li M; Alvarez P; Bilgili E Int J Pharm; 2017 May; 524(1-2):178-192. PubMed ID: 28380391 [TBL] [Abstract][Full Text] [Related]
31. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. George M; Ghosh I Eur J Pharm Sci; 2013 Jan; 48(1-2):142-52. PubMed ID: 23085547 [TBL] [Abstract][Full Text] [Related]
32. Inclusion Complexation of Etodolac with Hydroxypropyl-beta-cyclodextrin and Auxiliary Agents: Formulation Characterization and Molecular Modeling Studies. Sherje AP; Kulkarni V; Murahari M; Nayak UY; Bhat P; Suvarna V; Dravyakar B Mol Pharm; 2017 Apr; 14(4):1231-1242. PubMed ID: 28248111 [TBL] [Abstract][Full Text] [Related]
33. Development of an amorphous nanosuspension by sonoprecipitation-formulation and process optimization using design of experiment methodology. Gajera BY; Shah DA; Dave RH Int J Pharm; 2019 Mar; 559():348-359. PubMed ID: 30721724 [TBL] [Abstract][Full Text] [Related]
34. Preparation of azithromycin nanosuspensions by reactive precipitation method. Hou CD; Wang JX; Le Y; Zou HK; Zhao H Drug Dev Ind Pharm; 2012 Jul; 38(7):848-54. PubMed ID: 22092042 [TBL] [Abstract][Full Text] [Related]
35. Analysis of heat generation during the production of drug nanosuspensions in a wet stirred media mill. Guner G; Seetharaman N; Elashri S; Mehaj M; Bilgili E Int J Pharm; 2022 Aug; 624():122020. PubMed ID: 35842083 [TBL] [Abstract][Full Text] [Related]
36. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development. Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369 [TBL] [Abstract][Full Text] [Related]
37. Production of aprepitant nanocrystals by wet media milling and subsequent solidification. Toziopoulou F; Malamatari M; Nikolakakis I; Kachrimanis K Int J Pharm; 2017 Nov; 533(2):324-334. PubMed ID: 28257885 [TBL] [Abstract][Full Text] [Related]
38. Overcoming the Solubility Barrier of Ibuprofen by the Rational Process Design of a Nanocrystal Formulation. Ouranidis A; Gkampelis N; Vardaka E; Karagianni A; Tsiptsios D; Nikolakakis I; Kachrimanis K Pharmaceutics; 2020 Oct; 12(10):. PubMed ID: 33066680 [TBL] [Abstract][Full Text] [Related]
39. The Impact of Process and Formulation Parameters on the Fabrication of Efavirenz Nanosuspension to Improve Drug Solubility and Dissolution. Rashed M; Dadashzadeh S; Bolourchian N Iran J Pharm Res; 2022 Dec; 21(1):e129409. PubMed ID: 36942076 [TBL] [Abstract][Full Text] [Related]
40. Systematical Investigation of Different Drug Nanocrystal Technologies to Produce Fast Dissolving Meloxicam Tablets. Liu T; Yao G; Zhang X; Zuo X; Wang L; Yin H; Möschwitzer JP AAPS PharmSciTech; 2018 Feb; 19(2):783-791. PubMed ID: 29019059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]