These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 32476048)
41. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Singh SK; Srinivasan KK; Gowthamarajan K; Singare DS; Prakash D; Gaikwad NB Eur J Pharm Biopharm; 2011 Aug; 78(3):441-6. PubMed ID: 21439378 [TBL] [Abstract][Full Text] [Related]
42. Fabrication of multicomponent amorphous bufadienolides nanosuspension with wet milling improves dissolution and stability. Zuo W; Qu W; Li N; Yu R; Hou Y; Liu Y; Gou G; Yang J Artif Cells Nanomed Biotechnol; 2018 Nov; 46(7):1513-1522. PubMed ID: 28906144 [TBL] [Abstract][Full Text] [Related]
43. Rosuvastatin calcium nanoparticles: Improving bioavailability by formulation and stabilization codesign. Alshora DH; Ibrahim MA; Elzayat E; Almeanazel OT; Alanazi F PLoS One; 2018; 13(7):e0200218. PubMed ID: 29985967 [TBL] [Abstract][Full Text] [Related]
44. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Ghosh I; Schenck D; Bose S; Ruegger C Eur J Pharm Sci; 2012 Nov; 47(4):718-28. PubMed ID: 22940548 [TBL] [Abstract][Full Text] [Related]
45. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. Hao J; Gao Y; Zhao J; Zhang J; Li Q; Zhao Z; Liu J AAPS PharmSciTech; 2015 Feb; 16(1):118-28. PubMed ID: 25209687 [TBL] [Abstract][Full Text] [Related]
46. Nanosuspensions as delivery system for gambogenic acid: characterization and in vitro/in vivo evaluation. Yuan H; Li X; Zhang C; Pan W; Liang Y; Chen Y; Chen W; Liu L; Wang X Drug Deliv; 2016 Oct; 23(8):2772-2779. PubMed ID: 26292058 [TBL] [Abstract][Full Text] [Related]
47. Glabridin nanosuspension for enhanced skin penetration: formulation optimization, in vitro and in vivo evaluation. Wang WP; Hul J; Sui H; Zhao YS; Feng J; Liu C Pharmazie; 2016 May; 71(5):252-7. PubMed ID: 27348968 [TBL] [Abstract][Full Text] [Related]
48. The Scalability of Wet Ball Milling for The Production of Nanosuspensions. Lestari MLAD; Müller RH; Möschwitzer JP Pharm Nanotechnol; 2019; 7(2):147-161. PubMed ID: 30931866 [TBL] [Abstract][Full Text] [Related]
49. [Preparation of nanosuspension of quercetin with a miniaturized milling method]. Liu X; Liu J; Pang JY; Shen BD; Shen CY; Lian WQ; Li XF; Yuan HL Zhongguo Zhong Yao Za Zhi; 2017 Aug; 42(15):2984-2988. PubMed ID: 29139267 [TBL] [Abstract][Full Text] [Related]
50. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Elsayed I; Abdelbary AA; Elshafeey AH Int J Nanomedicine; 2014; 9():2943-53. PubMed ID: 24971006 [TBL] [Abstract][Full Text] [Related]
51. Preparation Nanocrystals of Poorly Soluble Plant Compounds Using an Ultra-Small-Scale Approach. Liu T; Yao G; Liu X; Yin H AAPS PharmSciTech; 2017 Oct; 18(7):2610-2617. PubMed ID: 28243886 [TBL] [Abstract][Full Text] [Related]
52. Development and comparison of intramuscularly long-acting paliperidone palmitate nanosuspensions with different particle size. Leng D; Chen H; Li G; Guo M; Zhu Z; Xu L; Wang Y Int J Pharm; 2014 Sep; 472(1-2):380-5. PubMed ID: 24882037 [TBL] [Abstract][Full Text] [Related]
53. Increase in Dissolution Rate of Zotepine via Nanomilling Process - Impact of Dried Nanocrystalline Suspensions on Bioavailability. Parmar K; Oza K AAPS PharmSciTech; 2021 Dec; 23(1):20. PubMed ID: 34907489 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of quercetin nanocrystals: comparison of different methods. Kakran M; Shegokar R; Sahoo NG; Shaal LA; Li L; Müller RH Eur J Pharm Biopharm; 2012 Jan; 80(1):113-21. PubMed ID: 21896330 [TBL] [Abstract][Full Text] [Related]
55. Generation of wear during the production of drug nanosuspensions by wet media milling. Juhnke M; Märtin D; John E Eur J Pharm Biopharm; 2012 May; 81(1):214-22. PubMed ID: 22269938 [TBL] [Abstract][Full Text] [Related]
56. Development and characterization of nanosuspensions of olmesartan medoxomil for bioavailability enhancement. Thakkar HP; Patel BV; Thakkar SP J Pharm Bioallied Sci; 2011 Jul; 3(3):426-34. PubMed ID: 21966165 [TBL] [Abstract][Full Text] [Related]
57. Downstream drug product processing of itraconazole nanosuspension: Factors influencing drug particle size and dissolution from nanosuspension-layered beads. Parmentier J; Tan EH; Low A; Möschwitzer JP Int J Pharm; 2017 May; 524(1-2):443-453. PubMed ID: 28400290 [TBL] [Abstract][Full Text] [Related]
58. Investigation of preparation parameters to improve the dissolution of poorly water-soluble meloxicam. Ambrus R; Kocbek P; Kristl J; Sibanc R; Rajkó R; Szabó-Révész P Int J Pharm; 2009 Nov; 381(2):153-9. PubMed ID: 19616609 [TBL] [Abstract][Full Text] [Related]
59. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Niwa T; Danjo K Eur J Pharm Sci; 2013 Nov; 50(3-4):272-81. PubMed ID: 23907001 [TBL] [Abstract][Full Text] [Related]
60. Study of effect of variables on particle size of telmisartan nanosuspensions using box-Behnken design. Rao MR; Bajaj A Drug Res (Stuttg); 2014 Dec; 64(12):663-7. PubMed ID: 24549965 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]