These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32476411)

  • 1. Controlled Chemistry via Contactless Manipulation and Merging of Droplets in an Acoustic Levitator.
    Brotton SJ; Kaiser RI
    Anal Chem; 2020 Jun; 92(12):8371-8377. PubMed ID: 32476411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the initial steps of the ignition chemistry of the hypergolic ionic liquid 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH]) with nitric acid (HNO
    Biswas S; Antonov I; Fujioka K; Rizzo GL; Chambreau SD; Schneider S; Sun R; Kaiser RI
    Phys Chem Chem Phys; 2023 Mar; 25(9):6602-6625. PubMed ID: 36806836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel high-temperature and pressure-compatible ultrasonic levitator apparatus coupled to Raman and Fourier transform infrared spectrometers.
    Brotton SJ; Kaiser RI
    Rev Sci Instrum; 2013 May; 84(5):055114. PubMed ID: 23742596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic Investigation of the Primary Reaction Intermediates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids.
    Brotton SJ; Lucas M; Chambreau SD; Vaghjiani GL; Yu J; Anderson SL; Kaiser RI
    J Phys Chem Lett; 2017 Dec; 8(24):6053-6059. PubMed ID: 29183120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy.
    Contreras V; Valencia R; Peralta J; Sobral H; Meneses-Nava MA; Martinez H
    Opt Lett; 2018 May; 43(10):2260-2263. PubMed ID: 29762567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic contactless injection, transportation, merging, and ejection of droplets with a multifocal point acoustic levitator.
    Andrade MAB; Camargo TSA; Marzo A
    Rev Sci Instrum; 2018 Dec; 89(12):125105. PubMed ID: 30599572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic Study on the Intermediates and Reaction Rates in the Oxidation of Levitated Droplets of Energetic Ionic Liquids by Nitrogen Dioxide.
    Brotton SJ; Lucas M; Jensen TN; Anderson SL; Kaiser RI
    J Phys Chem A; 2018 Sep; 122(37):7351-7377. PubMed ID: 30075622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic Manipulation of Droplets under Reduced Gravity.
    Hasegawa K; Watanabe A; Abe Y
    Sci Rep; 2019 Nov; 9(1):16603. PubMed ID: 31719646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coalescence Dynamics of Acoustically Levitated Droplets.
    Hasegawa K; Watanabe A; Kaneko A; Abe Y
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contactless Fluid Manipulation in Air: Droplet Coalescence and Active Mixing by Acoustic Levitation.
    Watanabe A; Hasegawa K; Abe Y
    Sci Rep; 2018 Jul; 8(1):10221. PubMed ID: 29977060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaporation of droplet in mid-air: Pure and binary droplets in single-axis acoustic levitator.
    Niimura Y; Hasegawa K
    PLoS One; 2019; 14(2):e0212074. PubMed ID: 30811437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Performance of an Acoustic Levitator System Coupled with a Tunable Monochromatic Light Source and a Raman Spectrometer for
    Dangi BB; Dickerson DJ
    ACS Omega; 2021 Apr; 6(15):10447-10453. PubMed ID: 34056197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-droplet evaporation kinetics and particle formation in an acoustic levitator. Part 1: evaporation of water microdroplets assessed using boundary-layer and acoustic levitation theories.
    Schiffter H; Lee G
    J Pharm Sci; 2007 Sep; 96(9):2274-83. PubMed ID: 17582811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput Triggered Merging of Surfactant-Stabilized Droplet Pairs Using Traveling Surface Acoustic Waves.
    Bussiere V; Vigne A; Link A; McGrath J; Srivastav A; Baret JC; Franke T
    Anal Chem; 2019 Nov; 91(21):13978-13985. PubMed ID: 31576738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous redispersibility behavior of glycerophosphate deyhydrogenase microparticles dried in an acoustic levitator or bench-top spray dryer.
    Lorenzen E; Lee G
    Int J Pharm; 2016 Feb; 498(1-2):316-7. PubMed ID: 26707244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-synchronization of reinjected droplets for high-efficiency droplet pairing and merging.
    Nan L; Mao T; Shum HC
    Microsyst Nanoeng; 2023; 9():24. PubMed ID: 36910256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Raman Spectroscopic Study of Gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator.
    Brotton SJ; Kaiser RI
    J Phys Chem Lett; 2013 Feb; 4(4):669-73. PubMed ID: 26281883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active microdroplet merging by hydrodynamic flow control using a pneumatic actuator-assisted pillar structure.
    Yoon DH; Jamshaid A; Ito J; Nakahara A; Tanaka D; Akitsu T; Sekiguchi T; Shoji S
    Lab Chip; 2014 Aug; 14(16):3050-5. PubMed ID: 24961178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustohydrodynamic tweezers via spatial arrangement of streaming vortices.
    Zhu H; Zhang P; Zhong Z; Xia J; Rich J; Mai J; Su X; Tian Z; Bachman H; Rufo J; Gu Y; Kang P; Chakrabarty K; Witelski TP; Huang TJ
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Size and Prestressing of Aluminum Particles on the Oxidation of Levitated
    Lucas M; Brotton SJ; Min A; Woodruff C; Pantoya ML; Kaiser RI
    J Phys Chem A; 2020 Feb; 124(8):1489-1507. PubMed ID: 32065522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.