BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32476596)

  • 41. RNA Secondary Structure Prediction Based on Energy Models.
    Akiyama M; Sato K
    Methods Mol Biol; 2023; 2586():89-105. PubMed ID: 36705900
    [TBL] [Abstract][Full Text] [Related]  

  • 42. TRANSAT-- method for detecting the conserved helices of functional RNA structures, including transient, pseudo-knotted and alternative structures.
    Wiebe NJ; Meyer IM
    PLoS Comput Biol; 2010 Jun; 6(6):e1000823. PubMed ID: 20589081
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Review of machine learning methods for RNA secondary structure prediction.
    Zhao Q; Zhao Z; Fan X; Yuan Z; Mao Q; Yao Y
    PLoS Comput Biol; 2021 Aug; 17(8):e1009291. PubMed ID: 34437528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.
    Rivas E; Lang R; Eddy SR
    RNA; 2012 Feb; 18(2):193-212. PubMed ID: 22194308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning.
    Singh J; Hanson J; Paliwal K; Zhou Y
    Nat Commun; 2019 Nov; 10(1):5407. PubMed ID: 31776342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RNA secondary structure prediction with convolutional neural networks.
    Saman Booy M; Ilin A; Orponen P
    BMC Bioinformatics; 2022 Feb; 23(1):58. PubMed ID: 35109787
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A New Method to Predict Ion Effects in RNA Folding.
    Sun LZ; Chen SJ
    Methods Mol Biol; 2017; 1632():1-17. PubMed ID: 28730429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PSRna: Prediction of small RNA secondary structures based on reverse complementary folding method.
    Li J; Xu C; Wang L; Liang H; Feng W; Cai Z; Wang Y; Cong W; Liu Y
    J Bioinform Comput Biol; 2016 Aug; 14(4):1643001. PubMed ID: 27045556
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deep-learning contact-map guided protein structure prediction in CASP13.
    Zheng W; Li Y; Zhang C; Pearce R; Mortuza SM; Zhang Y
    Proteins; 2019 Dec; 87(12):1149-1164. PubMed ID: 31365149
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design of RNAs: comparing programs for inverse RNA folding.
    Churkin A; Retwitzer MD; Reinharz V; Ponty Y; Waldispühl J; Barash D
    Brief Bioinform; 2018 Mar; 19(2):350-358. PubMed ID: 28049135
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Research on folding diversity in statistical learning methods for RNA secondary structure prediction.
    Zhu Y; Xie Z; Li Y; Zhu M; Chen YP
    Int J Biol Sci; 2018; 14(8):872-882. PubMed ID: 29989089
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Recent advances in RNA folding.
    Fallmann J; Will S; Engelhardt J; Grüning B; Backofen R; Stadler PF
    J Biotechnol; 2017 Nov; 261():97-104. PubMed ID: 28690134
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting RNA Secondary Structure Using In Vitro and In Vivo Data.
    Delli Ponti R; Tartaglia GG
    Methods Mol Biol; 2022; 2404():43-52. PubMed ID: 34694602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of RNA secondary structure by free energy minimization.
    Mathews DH; Turner DH
    Curr Opin Struct Biol; 2006 Jun; 16(3):270-8. PubMed ID: 16713706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving RNA secondary structure prediction with structure mapping data.
    Sloma MF; Mathews DH
    Methods Enzymol; 2015; 553():91-114. PubMed ID: 25726462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic matchers: strengthening the significance of RNA folding energies.
    Höchsmann T; Höchsmann M; Giegerich R
    Comput Syst Bioinformatics Conf; 2006; ():111-21. PubMed ID: 17369630
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter.
    Lu W; Tang Y; Wu H; Huang H; Fu Q; Qiu J; Li H
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):684. PubMed ID: 31874602
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Guide to Computational Cotranscriptional Folding Featuring the SRP RNA.
    Badelt S; Lorenz R
    Methods Mol Biol; 2024; 2726():315-346. PubMed ID: 38780737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq).
    Watters KE; Yu AM; Strobel EJ; Settle AH; Lucks JB
    Methods; 2016 Jul; 103():34-48. PubMed ID: 27064082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identifying good predictions of RNA secondary structure.
    Nebel ME
    Pac Symp Biocomput; 2004; ():423-34. PubMed ID: 14992522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.