These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1738 related articles for article (PubMed ID: 32476800)

  • 21. Radiomics signature as a new biomarker for preoperative prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer.
    Zhang Z; Jiang X; Zhang R; Yu T; Liu S; Luo Y
    Diagn Interv Radiol; 2021 May; 27(3):308-314. PubMed ID: 34003118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of response to neoadjuvant chemotherapy in advanced gastric cancer: A radiomics nomogram analysis based on CT images and clinicopathological features.
    Tan X; Yang X; Hu S; Ge Y; Wu Q; Wang J; Sun Z
    J Xray Sci Technol; 2023; 31(1):49-61. PubMed ID: 36314190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
    Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H
    Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Risk factor analysis on anastomotic leakage after laparoscopic surgery in rectal cancer patient with neoadjuvant therapy and establishment of a nomogram prediction model].
    Jiang W; Feng MY; Dong XY; Dong SM; Zheng JX; Liu XM; Liu WJ; Yan J
    Zhonghua Wei Chang Wai Ke Za Zhi; 2019 Aug; 22(8):748-754. PubMed ID: 31422613
    [No Abstract]   [Full Text] [Related]  

  • 25. Clinical-radiomics nomograms for pre-operative differentiation of sacral chordoma and sacral giant cell tumor based on 3D computed tomography and multiparametric magnetic resonance imaging.
    Yin P; Mao N; Wang S; Sun C; Hong N
    Br J Radiol; 2019 Sep; 92(1101):20190155. PubMed ID: 31276426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development and validation of an MRI-based radiomic nomogram to distinguish between good and poor responders in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiotherapy.
    Wang J; Liu X; Hu B; Gao Y; Chen J; Li J
    Abdom Radiol (NY); 2021 May; 46(5):1805-1815. PubMed ID: 33151359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer.
    Liu Z; Zhang XY; Shi YJ; Wang L; Zhu HT; Tang Z; Wang S; Li XT; Tian J; Sun YS
    Clin Cancer Res; 2017 Dec; 23(23):7253-7262. PubMed ID: 28939744
    [No Abstract]   [Full Text] [Related]  

  • 28. Preoperative Prediction of Extramural Venous Invasion in Rectal Cancer: Comparison of the Diagnostic Efficacy of Radiomics Models and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
    Yu X; Song W; Guo D; Liu H; Zhang H; He X; Song J; Zhou J; Liu X
    Front Oncol; 2020; 10():459. PubMed ID: 32328461
    [No Abstract]   [Full Text] [Related]  

  • 29. Radiomics-enhanced early regression index for predicting treatment response in rectal cancer: a multi-institutional 0.35 T MRI-guided radiotherapy study.
    Boldrini L; Chiloiro G; Cusumano D; Yadav P; Yu G; Romano A; Piras A; Votta C; Placidi L; Broggi S; Catucci F; Lenkowicz J; Indovina L; Bassetti MF; Yang Y; Fiorino C; Valentini V; Gambacorta MA
    Radiol Med; 2024 Apr; 129(4):615-622. PubMed ID: 38512616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI.
    Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY
    Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nomograms for predicting pathological response to neoadjuvant treatments in patients with rectal cancer.
    Ren DL; Li J; Yu HC; Peng SY; Lin WD; Wang XL; Ghoorun RA; Luo YX
    World J Gastroenterol; 2019 Jan; 25(1):118-137. PubMed ID: 30643363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiomics Nomogram Based on Dual-Sequence MRI for Assessing Ki-67 Expression in Breast Cancer.
    Zhang L; Shen M; Zhang D; He X; Du Q; Liu N; Huang X
    J Magn Reson Imaging; 2024 Sep; 60(3):1203-1212. PubMed ID: 38088478
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting poor response to neoadjuvant chemoradiotherapy for locally advanced rectal cancer: Model constructed using pre-treatment MRI features of structured report template.
    Tang X; Jiang W; Li H; Xie F; Dong A; Liu L; Li L
    Radiother Oncol; 2020 Jul; 148():97-106. PubMed ID: 32339781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preoperative prediction of perineural invasion with multi-modality radiomics in rectal cancer.
    Guo Y; Wang Q; Guo Y; Zhang Y; Fu Y; Zhang H
    Sci Rep; 2021 May; 11(1):9429. PubMed ID: 33941817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feature selection based on unsupervised clustering evaluation for predicting neoadjuvant chemoradiation response for patients with locally advanced rectal cancer.
    Chen H; Li X; Pan X; Qiang Y; Qi XS
    Phys Med Biol; 2023 Dec; 68(23):. PubMed ID: 37972413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A combined model using pre-treatment CT radiomics and clinicopathological features of non-small cell lung cancer to predict major pathological responses after neoadjuvant chemoimmunotherapy.
    Wang F; Yang H; Chen W; Ruan L; Jiang T; Cheng L; Jiang H; Fang M
    Curr Probl Cancer; 2024 Jun; 50():101098. PubMed ID: 38704949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nomogram based on MRI radiomics features of mesorectal fat for diagnosing T2- and T3-stage rectal cancer.
    Deng B; Wang Q; Liu Y; Yang Y; Gao X; Dai H
    Abdom Radiol (NY); 2024 Jun; 49(6):1850-1860. PubMed ID: 38349392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and validation of a radiopathomics model to predict pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a multicentre observational study.
    Feng L; Liu Z; Li C; Li Z; Lou X; Shao L; Wang Y; Huang Y; Chen H; Pang X; Liu S; He F; Zheng J; Meng X; Xie P; Yang G; Ding Y; Wei M; Yun J; Hung MC; Zhou W; Wahl DR; Lan P; Tian J; Wan X
    Lancet Digit Health; 2022 Jan; 4(1):e8-e17. PubMed ID: 34952679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiparametric MRI-based radiomics nomogram for the preoperative prediction of lymph node metastasis in rectal cancer: A two-center study.
    Zheng Y; Chen X; Zhang H; Ning X; Mao Y; Zheng H; Dai G; Liu B; Zhang G; Huang D
    Eur J Radiol; 2024 Sep; 178():111591. PubMed ID: 39013271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.
    Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I
    Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 87.