These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32476995)

  • 1. Computational Prediction of Ubiquitination Proteins Using Evolutionary Profiles and Functional Domain Annotation.
    Qiu W; Xu C; Xiao X; Xu D
    Curr Genomics; 2019 Aug; 20(5):389-399. PubMed ID: 32476995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Acetylation Protein by Fusing Its PseAAC and Functional Domain Annotation.
    Qiu WR; Xu A; Xu ZC; Zhang CH; Xiao X
    Front Bioeng Biotechnol; 2019; 7():311. PubMed ID: 31867311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepTL-Ubi: A novel deep transfer learning method for effectively predicting ubiquitination sites of multiple species.
    Liu Y; Li A; Zhao XM; Wang M
    Methods; 2021 Aug; 192():103-111. PubMed ID: 32791338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RF-MaloSite and DL-Malosite: Methods based on random forest and deep learning to identify malonylation sites.
    Al-Barakati H; Thapa N; Hiroto S; Roy K; Newman RH; Kc D
    Comput Struct Biotechnol J; 2020; 18():852-860. PubMed ID: 32322367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PrUb-EL: A hybrid framework based on deep learning for identifying ubiquitination sites in Arabidopsis thaliana using ensemble learning strategy.
    Wang H; Li H; Gao W; Xie J
    Anal Biochem; 2022 Dec; 658():114935. PubMed ID: 36206844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESA-UbiSite: accurate prediction of human ubiquitination sites by identifying a set of effective negatives.
    Wang JR; Huang WL; Tsai MJ; Hsu KT; Huang HL; Ho SY
    Bioinformatics; 2017 Mar; 33(5):661-668. PubMed ID: 28062441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational identification of human ubiquitination sites using convolutional and recurrent neural networks.
    Wang X; Yan R; Wang Y
    Mol Omics; 2021 Dec; 17(6):948-955. PubMed ID: 34515266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale prediction of protein ubiquitination sites using a multimodal deep architecture.
    He F; Wang R; Li J; Bao L; Xu D; Zhao X
    BMC Syst Biol; 2018 Nov; 12(Suppl 6):109. PubMed ID: 30463553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards Computational Models of Identifying Protein Ubiquitination Sites.
    Wang L; Zhang R
    Curr Drug Targets; 2019; 20(5):565-578. PubMed ID: 30246637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein ubiquitination sites via multi-view features based on eXtreme gradient boosting classifier.
    Liu Y; Jin S; Song L; Han Y; Yu B
    J Mol Graph Model; 2021 Sep; 107():107962. PubMed ID: 34198216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PseAraUbi: predicting arabidopsis ubiquitination sites by incorporating the physico-chemical and structural features.
    Wang W; Zhang Y; Liu D; Zhang H; Wang X; Zhou Y
    Plant Mol Biol; 2022 Sep; 110(1-2):81-92. PubMed ID: 35773617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. m6AGE: A Predictor for N6-Methyladenosine Sites Identification Utilizing Sequence Characteristics and Graph Embedding-Based Geometrical Information.
    Wang Y; Guo R; Huang L; Yang S; Hu X; He K
    Front Genet; 2021; 12():670852. PubMed ID: 34122525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-dimensional feature recognition model based on capsule network for ubiquitination site prediction.
    Li W; Wang J; Luo Y; Bezabih TT
    PeerJ; 2022; 10():e14427. PubMed ID: 36523471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based approaches for ubiquitination site prediction in human proteins.
    Pourmirzaei M; Ramazi S; Esmaili F; Shojaeilangari S; Allahvardi A
    BMC Bioinformatics; 2023 Nov; 24(1):449. PubMed ID: 38017391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lysine ubiquitination with mRMR feature selection and analysis.
    Cai Y; Huang T; Hu L; Shi X; Xie L; Li Y
    Amino Acids; 2012 Apr; 42(4):1387-95. PubMed ID: 21267749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mal-Prec: computational prediction of protein Malonylation sites via machine learning based feature integration : Malonylation site prediction.
    Liu X; Wang L; Li J; Hu J; Zhang X
    BMC Genomics; 2020 Nov; 21(1):812. PubMed ID: 33225896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAPPHIRE: A stacking-based ensemble learning framework for accurate prediction of thermophilic proteins.
    Charoenkwan P; Schaduangrat N; Moni MA; Lio' P; Manavalan B; Shoombuatong W
    Comput Biol Med; 2022 Jul; 146():105704. PubMed ID: 35690478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards more accurate prediction of ubiquitination sites: a comprehensive review of current methods, tools and features.
    Chen Z; Zhou Y; Zhang Z; Song J
    Brief Bioinform; 2015 Jul; 16(4):640-57. PubMed ID: 25212598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.