These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32476995)

  • 41. Prediction of protein crotonylation sites through LightGBM classifier based on SMOTE and elastic net.
    Liu Y; Yu Z; Chen C; Han Y; Yu B
    Anal Biochem; 2020 Nov; 609():113903. PubMed ID: 32805274
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A New Scheme to Characterize and Identify Protein Ubiquitination Sites.
    Nguyen VN; Huang KY; Huang CH; Lai KR; Lee TY
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):393-403. PubMed ID: 26887002
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An integration of deep learning with feature embedding for protein-protein interaction prediction.
    Yao Y; Du X; Diao Y; Zhu H
    PeerJ; 2019; 7():e7126. PubMed ID: 31245182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 45. O-GlcNAcPRED-II: an integrated classification algorithm for identifying O-GlcNAcylation sites based on fuzzy undersampling and a K-means PCA oversampling technique.
    Jia C; Zuo Y; Zou Q
    Bioinformatics; 2018 Jun; 34(12):2029-2036. PubMed ID: 29420699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using WPNNA classifier in ubiquitination site prediction based on hybrid features.
    Feng KY; Huang T; Feng KR; Liu XJ
    Protein Pept Lett; 2013 Mar; 20(3):318-23. PubMed ID: 22591471
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.
    Zhou H; Yang Y; Shen HB
    Bioinformatics; 2017 Mar; 33(6):843-853. PubMed ID: 27993784
    [TBL] [Abstract][Full Text] [Related]  

  • 48. UPFPSR: a ubiquitylation predictor for plant through combining sequence information and random forest.
    Yin S; Zheng J; Jia C; Zou Q; Lin Z; Shi H
    Math Biosci Eng; 2022 Jan; 19(1):775-791. PubMed ID: 34903012
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites.
    Al-Barakati HJ; McConnell EW; Hicks LM; Poole LB; Newman RH; Kc DB
    Sci Rep; 2018 Jul; 8(1):11288. PubMed ID: 30050050
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptome-Wide Annotation of m
    Song J; Zhai J; Bian E; Song Y; Yu J; Ma C
    Front Plant Sci; 2018; 9():519. PubMed ID: 29720995
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NonClasGP-Pred: robust and efficient prediction of non-classically secreted proteins by integrating subset-specific optimal models of imbalanced data.
    Wang C; Wu J; Xu L; Zou Q
    Microb Genom; 2020 Dec; 6(12):. PubMed ID: 33245691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Using random forest algorithm to predict β-hairpin motifs.
    Jia SC; Hu XZ
    Protein Pept Lett; 2011 Jun; 18(6):609-17. PubMed ID: 21309739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of NAD interacting residues in proteins.
    Ansari HR; Raghava GP
    BMC Bioinformatics; 2010 Mar; 11():160. PubMed ID: 20353553
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plant-mSubP: a computational framework for the prediction of single- and multi-target protein subcellular localization using integrated machine-learning approaches.
    Sahu SS; Loaiza CD; Kaundal R
    AoB Plants; 2020 Jun; 12(3):plz068. PubMed ID: 32528639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-based prediction of protein- peptide binding regions using Random Forest.
    Taherzadeh G; Zhou Y; Liew AW; Yang Y
    Bioinformatics; 2018 Feb; 34(3):477-484. PubMed ID: 29028926
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validating subcellular localization prediction tools with mycobacterial proteins.
    Restrepo-Montoya D; Vizcaíno C; Niño LF; Ocampo M; Patarroyo ME; Patarroyo MA
    BMC Bioinformatics; 2009 May; 10():134. PubMed ID: 19422713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.
    Pan G; Jiang L; Tang J; Guo F
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29419752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.