These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32477392)

  • 1. Editorial: Importance of Root Symbiomes for Plant Nutrition: New Insights, Perspectives and Future Challenges.
    Garcia K; Bücking H; Zimmermann SD
    Front Plant Sci; 2020; 11():594. PubMed ID: 32477392
    [No Abstract]   [Full Text] [Related]  

  • 2. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.
    Wang W; Shi J; Xie Q; Jiang Y; Yu N; Wang E
    Mol Plant; 2017 Sep; 10(9):1147-1158. PubMed ID: 28782719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Root symbionts: Powerful drivers of plant above- and belowground indirect defenses.
    Rasmann S; Bennett A; Biere A; Karley A; Guerrieri E
    Insect Sci; 2017 Dec; 24(6):947-960. PubMed ID: 28374534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of the Host Plant Is the Major Ecological Determinant of the Presence of Nitrogen-Fixing Root Nodule Symbiont Cluster II Frankia Species in Soil.
    Battenberg K; Wren JA; Hillman J; Edwards J; Huang L; Berry AM
    Appl Environ Microbiol; 2017 Jan; 83(1):. PubMed ID: 27795313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering composition and function of the root microbiome of a legume plant.
    Hartman K; van der Heijden MG; Roussely-Provent V; Walser JC; Schlaeppi K
    Microbiome; 2017 Jan; 5(1):2. PubMed ID: 28095877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factors network in root endosymbiosis establishment and development.
    Diédhiou I; Diouf D
    World J Microbiol Biotechnol; 2018 Feb; 34(3):37. PubMed ID: 29450655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils.
    White JF; Chen Q; Torres MS; Mattera R; Irizarry I; Tadych M; Bergen M
    AoB Plants; 2015 Jan; 7():. PubMed ID: 25564515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing.
    Young E; Carey M; Meharg AA; Meharg C
    Microbiome; 2018 Mar; 6(1):48. PubMed ID: 29554982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Diversity and Fertilizer Management Shape the Belowground Microbiome of Native Grass Bioenergy Feedstocks.
    Revillini D; Wilson GWT; Miller RM; Lancione R; Johnson NC
    Front Plant Sci; 2019; 10():1018. PubMed ID: 31475019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis.
    Chen A; Gu M; Wang S; Chen J; Xu G
    Semin Cell Dev Biol; 2018 Feb; 74():80-88. PubMed ID: 28647533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply.
    Püschel D; Janoušková M; Hujslová M; Slavíková R; Gryndlerová H; Jansa J
    Ecol Evol; 2016 Jul; 6(13):4332-46. PubMed ID: 27386079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula.
    Hofferek V; Mendrinna A; Gaude N; Krajinski F; Devers EA
    BMC Plant Biol; 2014 Jul; 14():199. PubMed ID: 25928247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global imprint of mycorrhizal fungi on whole-plant nutrient economics.
    Averill C; Bhatnagar JM; Dietze MC; Pearse WD; Kivlin SN
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23163-23168. PubMed ID: 31659035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes.
    Tedersoo L; Bahram M
    Biol Rev Camb Philos Soc; 2019 Oct; 94(5):1857-1880. PubMed ID: 31270944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees.
    Chen W; Koide RT; Adams TS; DeForest JL; Cheng L; Eissenstat DM
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):8741-6. PubMed ID: 27432986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment.
    van der Heijden MG; de Bruin S; Luckerhoff L; van Logtestijn RS; Schlaeppi K
    ISME J; 2016 Feb; 10(2):389-99. PubMed ID: 26172208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula.
    Konvalinková T; Püschel D; Janoušková M; Gryndler M; Jansa J
    Front Plant Sci; 2015; 6():65. PubMed ID: 25763002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth.
    Artursson V; Finlay RD; Jansson JK
    Environ Microbiol; 2006 Jan; 8(1):1-10. PubMed ID: 16343316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system.
    Ingraffia R; Amato G; Frenda AS; Giambalvo D
    PLoS One; 2019; 14(3):e0213672. PubMed ID: 30856237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown.
    Corrêa A; Cruz C; Ferrol N
    Mycorrhiza; 2015 Oct; 25(7):499-515. PubMed ID: 25681010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.