These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32477841)

  • 1. A two-tier bioinformatic pipeline to develop probes for target capture of nuclear loci with applications in Melastomataceae.
    Jantzen JR; Amarasinghe P; Folk RA; Reginato M; Michelangeli FA; Soltis DE; Cellinese N; Soltis PS
    Appl Plant Sci; 2020 May; 8(5):e11345. PubMed ID: 32477841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An updated and extended version of the Melastomataceae probe set for target capture.
    Dagallier LMJ; Michelangeli FA
    Appl Plant Sci; 2024; 12(1):e11564. PubMed ID: 38369977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and biogeography of Memecylon.
    Amarasinghe P; Joshi S; Page N; Wijedasa LS; Merello M; Kathriarachchi H; Stone RD; Judd W; Kodandaramaiah U; Cellinese N
    Am J Bot; 2021 Apr; 108(4):628-646. PubMed ID: 33745129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A target enrichment probe set for resolving phylogenetic relationships in the coffee family, Rubiaceae.
    Ball LD; Bedoya AM; Taylor CM; Lagomarsino LP
    Appl Plant Sci; 2023; 11(6):e11554. PubMed ID: 38106541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of microsatellite markers for the endangered Neotropical tree species Tibouchina papyrus (Melastomataceae).
    Telles MP; Peixoto FP; Lima JS; Resende LV; Vianello RP; Walter ME; Collevatti RG
    Genet Mol Res; 2011 Feb; 10(1):321-5. PubMed ID: 21365547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Primers for low-copy nuclear genes in the Melastomataceae.
    Reginato M; Michelangeli FA
    Appl Plant Sci; 2016 Jan; 4(1):. PubMed ID: 26819862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Approach Using Targeted Sequence Capture for Phylogenomic Studies across Cactaceae.
    Acha S; Majure LC
    Genes (Basel); 2022 Feb; 13(2):. PubMed ID: 35205394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pipeline for assembling low copy nuclear markers from plant genome skimming data for phylogenetic use.
    Reginato M
    PeerJ; 2022; 10():e14525. PubMed ID: 36523475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics.
    Weitemier K; Straub SC; Cronn RC; Fishbein M; Schmickl R; McDonnell A; Liston A
    Appl Plant Sci; 2014 Sep; 2(9):. PubMed ID: 25225629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first complete plastid genomes of Melastomataceae are highly structurally conserved.
    Reginato M; Neubig KM; Majure LC; Michelangeli FA
    PeerJ; 2016; 4():e2715. PubMed ID: 27917315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assexon: Assembling Exon Using Gene Capture Data.
    Yuan H; Atta C; Tornabene L; Li C
    Evol Bioinform Online; 2019; 15():1176934319874792. PubMed ID: 31523128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MarkerMiner 1.0: A new application for phylogenetic marker development using angiosperm transcriptomes.
    Chamala S; García N; Godden GT; Krishnakumar V; Jordon-Thaden IE; De Smet R; Barbazuk WB; Soltis DE; Soltis PS
    Appl Plant Sci; 2015 Apr; 3(4):. PubMed ID: 25909041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A target capture approach for phylogenomic analyses at multiple evolutionary timescales in rosewoods (Dalbergia spp.) and the legume family (Fabaceae).
    Crameri S; Fior S; Zoller S; Widmer A
    Mol Ecol Resour; 2022 Nov; 22(8):3087-3105. PubMed ID: 35689779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering.
    Johnson MG; Pokorny L; Dodsworth S; Botigué LR; Cowan RS; Devault A; Eiserhardt WL; Epitawalage N; Forest F; Kim JT; Leebens-Mack JH; Leitch IJ; Maurin O; Soltis DE; Soltis PS; Wong GK; Baker WJ; Wickett NJ
    Syst Biol; 2019 Jul; 68(4):594-606. PubMed ID: 30535394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Pipeline for Removing Paralogs in Target Enrichment Data.
    Zhou W; Soghigian J; Xiang QJ
    Syst Biol; 2022 Feb; 71(2):410-425. PubMed ID: 34146111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic relationships of Indian
    Sivu AR; Pradeep NS; Pandurangan AG; Dwivedi MD; Pandey AK
    J Genet; 2022; 101():. PubMed ID: 35129127
    [No Abstract]   [Full Text] [Related]  

  • 17. Targeting legume loci: A comparison of three methods for target enrichment bait design in Leguminosae phylogenomics.
    Vatanparast M; Powell A; Doyle JJ; Egan AN
    Appl Plant Sci; 2018 Mar; 6(3):e1036. PubMed ID: 29732266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. hybpiper-nf and paragone-nf: Containerization and additional options for target capture assembly and paralog resolution.
    Jackson C; McLay T; Schmidt-Lebuhn AN
    Appl Plant Sci; 2023; 11(4):e11532. PubMed ID: 37601313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae).
    Debray K; Marie-Magdelaine J; Ruttink T; Clotault J; Foucher F; Malécot V
    BMC Evol Biol; 2019 Jul; 19(1):152. PubMed ID: 31340752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A customized nuclear target enrichment approach for developing a phylogenomic baseline for
    Soto Gomez M; Pokorny L; Kantar MB; Forest F; Leitch IJ; Gravendeel B; Wilkin P; Graham SW; Viruel J
    Appl Plant Sci; 2019 Jun; 7(6):e11254. PubMed ID: 31236313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.