These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32478043)

  • 1. Efficient Multi-Enzymes Immobilized on Porous Microspheres for Producing Inositol From Starch.
    Han P; Zhou X; You C
    Front Bioeng Biotechnol; 2020; 8():380. PubMed ID: 32478043
    [No Abstract]   [Full Text] [Related]  

  • 2. Carrier-Free Immobilization of Multi-Enzyme Complex Facilitates In Vitro Synthetic Enzymatic Biosystem for Biomanufacturing.
    Liu M; Song Y; Zhang YPJ; You C
    ChemSusChem; 2023 Mar; 16(6):e202202153. PubMed ID: 36538347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm-Mediated Immobilization of a Multienzyme Complex for Accelerating Inositol Production from Starch.
    Liu M; Han P; Zhang L; Zhong C; You C
    Bioconjug Chem; 2021 Sep; 32(9):2032-2042. PubMed ID: 34469136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch.
    You C; Shi T; Li Y; Han P; Zhou X; Zhang YP
    Biotechnol Bioeng; 2017 Aug; 114(8):1855-1864. PubMed ID: 28409846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An
    Fujisawa T; Fujinaga S; Atomi H
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem.
    Meng D; Wu R; Wang J; Zhu Z; You C
    Biotechnol Biofuels; 2019; 12():267. PubMed ID: 31737096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient production of inositol from glucose via a tri-enzymatic cascade pathway.
    Wang J; Cheng H; Zhao Z; Zhang Y
    Bioresour Technol; 2022 Jun; 353():127125. PubMed ID: 35398211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization.
    Eldin MS; Seuror EI; Nasr MA; Tieama HA
    Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermostable α-amylase immobilization: Enhanced stability and performance for starch biocatalysis.
    Kumar GS; Rather GM; Gurramkonda C; Reddy BR
    Biotechnol Appl Biochem; 2016; 63(1):57-66. PubMed ID: 25604037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of lipase on porous monodisperse chitosan microspheres.
    Chen Y; Liu J; Xia C; Zhao C; Ren Z; Zhang W
    Biotechnol Appl Biochem; 2015; 62(1):101-6. PubMed ID: 24823273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Progress in co-immobilization of multiple enzymes].
    Wang J; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):469-80. PubMed ID: 26380404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force spectroscopy predicts thermal stability of immobilized proteins by measuring microbead mechanics.
    Gregurec D; Velasco-Lozano S; Moya SE; Vázquez L; López-Gallego F
    Soft Matter; 2016 Oct; 12(42):8718-8725. PubMed ID: 27714304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving stability and reusability of Rhodococcus pyridinivorans NIT-36 nitrilase by whole cell immobilization using chitosan.
    Jyoti ; Bhatia K; Chauhan K; Attri C; Seth A
    Int J Biol Macromol; 2017 Oct; 103():8-15. PubMed ID: 28495629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Particle Kinetics of Immobilized Enzymes by Harnessing the Autofluorescence of Co-Immobilized Cofactors.
    Benítez-Mateos AI
    Methods Mol Biol; 2020; 2100():309-317. PubMed ID: 31939132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of highly porous, functional cellulose-based microspheres for potential enzyme carriers.
    Zhang H; Luan Q; Li Y; Wang J; Bao Y; Tang H; Huang F
    Int J Biol Macromol; 2022 Feb; 199():61-68. PubMed ID: 34954297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified chitosan microspheres in non-aggregated amylase immobilization.
    Rana M; Kumari A; Chauhan GS; Chauhan K
    Int J Biol Macromol; 2014 May; 66():46-51. PubMed ID: 24556121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of horseradish peroxidase on modified chitosan beads.
    Monier M; Ayad DM; Wei Y; Sarhan AA
    Int J Biol Macromol; 2010 Apr; 46(3):324-30. PubMed ID: 20060854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of Candida krusei cells producing phytase in alginate gel beads: an application of the preparation of myo-inositol phosphates.
    Quan CS; Fan SD; Ohta Y
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):41-7. PubMed ID: 12709834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials.
    Orrego AH; López-Gallego F; Fernandez-Lorente G; Guisan JM; Rocha-Martín J
    Methods Mol Biol; 2020; 2100():297-308. PubMed ID: 31939131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of sensors for direct detection of organophosphates. Part I: Immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports.
    Singh AK; Flounders AW; Volponi JV; Ashley CS; Wally K; Schoeniger JS
    Biosens Bioelectron; 1999 Dec; 14(8-9):703-13. PubMed ID: 10641290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.