These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 32478156)
1. Land surface black-sky albedo at a fixed solar zenith angle and its relation to forest structure during peak growing season based on remote sensing data. Alibakhshi S; Crowther TW; Naimi B Data Brief; 2020 Aug; 31():105720. PubMed ID: 32478156 [TBL] [Abstract][Full Text] [Related]
2. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product. Wang Z; Schaaf CB; Sun Q; Kim J; Erb AM; Gao F; Román MO; Yang Y; Petroy S; Taylor JR; Masek JG; Morisette JT; Zhang X; Papuga SA Int J Appl Earth Obs Geoinf; 2017 Jul; 59():104-117. PubMed ID: 33154713 [TBL] [Abstract][Full Text] [Related]
3. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau]. Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255 [TBL] [Abstract][Full Text] [Related]
4. Albedo estimated from remote sensing correlates with ecosystem multifunctionality in global drylands. Zhao Y; Wang X; Novillo CJ; Arrogante-Funes P; Vázquez-Jiménez R; Maestre FT J Arid Environ; 2018 Oct; 157():116-123. PubMed ID: 30174356 [TBL] [Abstract][Full Text] [Related]
5. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition. Leonardi S; Magnani F; Nolè A; Van Noije T; Borghetti M Glob Chang Biol; 2015 Jan; 21(1):287-98. PubMed ID: 25044609 [TBL] [Abstract][Full Text] [Related]
6. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. Wang Z; Erb AM; Schaaf CB; Sun Q; Liu Y; Yang Y; Shuai Y; Casey KA; Román MO Remote Sens Environ; 2016 Nov; 185():71-83. PubMed ID: 29769751 [TBL] [Abstract][Full Text] [Related]
7. [Temporal variation and influencing factors of albedo in a deciduous broad-leaved forest]. Ruan Y; Wang CK; Liu F; Wang XC Ying Yong Sheng Tai Xue Bao; 2022 Aug; 33(8):2068-2076. PubMed ID: 36043812 [TBL] [Abstract][Full Text] [Related]
8. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing. Wang JA; Sulla-Menashe D; Woodcock CE; Sonnentag O; Keeling RF; Friedl MA Glob Chang Biol; 2020 Feb; 26(2):807-822. PubMed ID: 31437337 [TBL] [Abstract][Full Text] [Related]
9. Impacts of forest loss on local climate across the conterminous United States: Evidence from satellite time-series observations. Li Y; Liu Y; Bohrer G; Cai Y; Wilson A; Hu T; Wang Z; Zhao K Sci Total Environ; 2022 Jan; 802():149651. PubMed ID: 34525747 [TBL] [Abstract][Full Text] [Related]
10. A machine learning approach to estimation of downward solar radiation from satellite-derived data products: An application over a semi-arid ecosystem in the U.S. Zhou Q; Flores A; Glenn NF; Walters R; Han B PLoS One; 2017; 12(8):e0180239. PubMed ID: 28777811 [TBL] [Abstract][Full Text] [Related]
11. Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data. Xu KJ; Tian QJ; Yue JB; Tang SF Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3986-3994. PubMed ID: 30584725 [TBL] [Abstract][Full Text] [Related]
12. Global validation of the collection 6 MODIS burned area product. Boschetti L; Roy DP; Giglio L; Huang H; Zubkova M; Humber ML Remote Sens Environ; 2019 Dec; 235():. PubMed ID: 32440029 [TBL] [Abstract][Full Text] [Related]
13. Response of the regression tree model to high resolution remote sensing data for predicting percent tree cover in a Mediterranean ecosystem. Donmez C; Berberoglu S; Erdogan MA; Tanriover AA; Cilek A Environ Monit Assess; 2015 Feb; 187(2):4. PubMed ID: 25604062 [TBL] [Abstract][Full Text] [Related]
14. Can tree species diversity be assessed with Landsat data in a temperate forest? Arekhi M; Yılmaz OY; Yılmaz H; Akyüz YF Environ Monit Assess; 2017 Oct; 189(11):586. PubMed ID: 29080961 [TBL] [Abstract][Full Text] [Related]
15. Representation of tree cover in global land cover products: Finland as a case study area. Majasalmi T; Rautiainen M Environ Monit Assess; 2021 Feb; 193(3):121. PubMed ID: 33576910 [TBL] [Abstract][Full Text] [Related]
16. Evaluating spatial-temporal dynamics of net primary productivity of different forest types in northeastern China based on improved FORCCHN. Zhao J; Yan X; Guo J; Jia G PLoS One; 2012; 7(11):e48131. PubMed ID: 23144853 [TBL] [Abstract][Full Text] [Related]
17. Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Ellison D; Pokorný J; Wild M Glob Chang Biol; 2024 Feb; 30(2):e17195. PubMed ID: 38389196 [TBL] [Abstract][Full Text] [Related]
18. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000). Prasad VK; Anuradha E; Badarinath KV Int J Biometeorol; 2005 Sep; 50(1):6-16. PubMed ID: 15902506 [TBL] [Abstract][Full Text] [Related]
19. Climate change decreases the cooling effect from postfire albedo in boreal North America. Potter S; Solvik K; Erb A; Goetz SJ; Johnstone JF; Mack MC; Randerson JT; Román MO; Schaaf CL; Turetsky MR; Veraverbeke S; Walker XJ; Wang Z; Massey R; Rogers BM Glob Chang Biol; 2020 Mar; 26(3):1592-1607. PubMed ID: 31658411 [TBL] [Abstract][Full Text] [Related]
20. Comparison of surface energy budgets and feedbacks to microclimate among different land use types in an agro-pastoral ecotone of northern China. Zhao W; Hu Z; Li S; Guo Q; Liu Z; Zhang L Sci Total Environ; 2017 Dec; 599-600():891-898. PubMed ID: 28501013 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]