These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

550 related articles for article (PubMed ID: 32478189)

  • 1. Simulation and validation of residual deformations in additive manufacturing of metal parts.
    Mayer T; Brändle G; Schönenberger A; Eberlein R
    Heliyon; 2020 May; 6(5):e03987. PubMed ID: 32478189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bi-directional Scan Pattern Effects on Residual Stresses and Distortion in As-built Nitinol Parts: A Trend Analysis Simulation Study.
    Monu MCC; Afkham Y; Chekotu JC; Ekoi EJ; Gu H; Teng C; Ginn J; Gaughran J; Brabazon D
    Integr Mater Manuf Innov; 2023; 12(1):52-69. PubMed ID: 36873293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FEM Simulation of AlSi10Mg Artifact for Additive Manufacturing Process Calibration with Industrial-Computed Tomography Validation.
    Patuelli C; Cestino E; Frulla G; Valente F; Servetti G; Esposito F; Barbero L
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37445068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of residual stresses in thin-walled additively manufactured structures from selective laser melting.
    Ahmed N; Barsoum I; Abu Al-Rub RK
    Heliyon; 2023 Sep; 9(9):e19385. PubMed ID: 37662789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique.
    Xing X; Duan X; Sun X; Gong H; Wang L; Jiang F
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Laser Melting of CuSn10: Simulation of Mechanical Properties, Microstructure, and Residual Stresses.
    Kremer R; Khani S; Appel T; Palkowski H; Foadian F
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermo-Mechanical Modeling of Wire-Fed Electron Beam Additive Manufacturing.
    Sikan F; Wanjara P; Gholipour J; Kumar A; Brochu M
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing Parameter Effects on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V.
    Ali H; Ghadbeigi H; Mumtaz K
    J Mater Eng Perform; 2018; 27(8):4059-4068. PubMed ID: 30956520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification and Analysis of Residual Stresses in Braking Pedal Produced via Laser-Powder Bed Fusion Additive Manufacturing Technology.
    Fojtík F; Potrok R; Hajnyš J; Ma QP; Kudrna L; Měsíček J
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D inkjet printing of biomaterials with strength reliability and cytocompatibility: Quantitative process strategy for Ti-6Al-4V.
    Barui S; Panda AK; Naskar S; Kuppuraj R; Basu S; Basu B
    Biomaterials; 2019 Aug; 213():119212. PubMed ID: 31152931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.
    Kabir MR; Richter H
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimizing Deformations during HP MJF 3D Printing.
    Ráž K; Chval Z; Thomann S
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Simulation Study on the Effect of Residual Stress on the Multi-Layer Selective Laser Melting Processes Considering Solid-State Phase Transformation.
    Li X; Zhang M; Qi J; Yang Z; Jiao Z
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Additive Manufacturing Technologies-A Review to Technical Synthesis in Numerical Study of Selective Laser Melting.
    Razavykia A; Brusa E; Delprete C; Yavari R
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the Platform for Three-Dimensional Simulation of Additive Layer Manufacturing Processes Characterized by Changes in State of Matter: Melting-Solidification.
    Svyetlichnyy DS
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Wire Arc Additive Manufacturing in the Reinforcement of a Half-Cylinder Shell Geometry.
    Zhao XF; Zapata A; Bernauer C; Baehr S; Zaeh MF
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable Hybrid Manufacturing of AlSi5 Alloy Turbine Blade Prototype by Robotic Direct Energy Layered Deposition and Subsequent Milling: An Alternative to Selective Laser Melting?
    Dugar J; Ikram A; Klobčar D; Pušavec F
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Feature Sizes in Selectively Laser Melted Ti-6Al-4V Parts on the Validity of Optimised Process Parameters.
    Phutela C; Aboulkhair NT; Tuck CJ; Ashcroft I
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Review of Research Progress in Selective Laser Melting (SLM).
    Gao B; Zhao H; Peng L; Sun Z
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting.
    Ao X; Liu J; Xia H; Yang Y
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.