These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32478241)

  • 1. Improving the Supercapacitor Performance by Dispersing SiO
    Lo AY; Chang CC; Lai YW; Chen PR; Xu BC
    ACS Omega; 2020 May; 5(20):11522-11528. PubMed ID: 32478241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet CMK-5 as an excellent mesoporous carbon to enhance the pseudocapacitance of polyaniline.
    Lei Z; Sun X; Wang H; Liu Z; Zhao XS
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7501-8. PubMed ID: 23848251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous carbon derived from herbal plant waste for supercapacitor electrodes with ultrahigh specific capacitance and excellent energy density.
    Zhang Y; Tang Z
    Waste Manag; 2020 Apr; 106():250-260. PubMed ID: 32240941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube@N-Doped Mesoporous Carbon Composite Material for Supercapacitor Electrodes.
    Fu X; Chen A; Yu Y; Hou S; Liu L
    Chem Asian J; 2019 Mar; 14(5):634-639. PubMed ID: 30614651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultra-High-Energy Density Supercapacitor; Fabrication Based on Thiol-functionalized Graphene Oxide Scrolls.
    Rani JR; Thangavel R; Oh SI; Lee YS; Jang JH
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30682829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-templated Synthesis of Nickel Silicate Hydroxide/Reduced Graphene Oxide Composite Hollow Microspheres as Highly Stable Supercapacitor Electrode Material.
    Zhang Y; Zhou W; Yu H; Feng T; Pu Y; Liu H; Xiao W; Tian L
    Nanoscale Res Lett; 2017 Dec; 12(1):325. PubMed ID: 28476079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Performance of PbO2 and PbO2-CNT Composite Electrodes for Energy Storage Devices.
    Soumya MS; Binitha G; Praveen P; Subramanian KR; Lee YS; Nair VS; Sivakumar N
    J Nanosci Nanotechnol; 2015 Jan; 15(1):703-8. PubMed ID: 26328430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel chemical route for CeO
    Pandit B; Sankapal BR; Koinkar PM
    Sci Rep; 2019 Apr; 9(1):5892. PubMed ID: 30971737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes.
    Nigam R; Kar KK
    Langmuir; 2022 Oct; 38(40):12235-12247. PubMed ID: 36164778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Flexible Solid-State Carbon Cloth Supercapacitors Based on Highly Processible N-Graphene Doped Polyacrylic Acid/Polyaniline Composites.
    Wang Y; Tang S; Vongehr S; Syed JA; Wang X; Meng X
    Sci Rep; 2016 Feb; 6():12883. PubMed ID: 26883179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of mesoporous carbon microsphere/polyaniline composites as high performance pseudocapacitive electrodes.
    Mu G; Ma C; Liu X; Qiao W; Wang J; Ling L
    J Colloid Interface Sci; 2020 Aug; 573():45-54. PubMed ID: 32259692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High energy density asymmetric supercapacitor based on NiOOH/Ni3S2/3D graphene and Fe3O4/graphene composite electrodes.
    Lin TW; Dai CS; Hung KC
    Sci Rep; 2014 Dec; 4():7274. PubMed ID: 25449978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors.
    Du SH; Wang LQ; Fu XT; Chen MM; Wang CY
    Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z; Liu X; Wang L; Bu F; Wei J; Pan D; Wu M
    Small; 2018 Sep; 14(39):e1801498. PubMed ID: 30151984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance asymmetric supercapacitor made of NiMoO
    Wang M; Zhang J; Yi X; Liu B; Zhao X; Liu X
    Beilstein J Nanotechnol; 2020; 11():240-251. PubMed ID: 32082963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interconnected hierarchical NiCo
    Cheng M; Fan H; Song Y; Cui Y; Wang R
    Dalton Trans; 2017 Jul; 46(28):9201-9209. PubMed ID: 28678249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.
    Ma G; Hua F; Sun K; Fenga E; Peng H; Zhang Z; Lei Z
    R Soc Open Sci; 2018 Jan; 5(1):171186. PubMed ID: 29410830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous Al-Ion Supercapacitor with V
    Tian M; Li R; Liu C; Long D; Cao G
    ACS Appl Mater Interfaces; 2019 May; 11(17):15573-15580. PubMed ID: 30965001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.