BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 32478490)

  • 1. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance.
    Huang L; Wu DZ; Zhang GP
    J Zhejiang Univ Sci B; 2020 Jun; 21(6):426-441. PubMed ID: 32478490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From swamp to field: how genes from mangroves and its associates can enhance crop salinity tolerance.
    Govindan G; Harini P; Alphonse V; Parani M
    Mol Biol Rep; 2024 Apr; 51(1):598. PubMed ID: 38683409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering salinity tolerance in plants: progress and prospects.
    Wani SH; Kumar V; Khare T; Guddimalli R; Parveda M; Solymosi K; Suprasanna P; Kavi Kishor PB
    Planta; 2020 Mar; 251(4):76. PubMed ID: 32152761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley.
    Yousefirad S; Soltanloo H; Ramezanpour SS; Zaynali Nezhad K; Shariati V
    PLoS One; 2020; 15(3):e0229513. PubMed ID: 32187229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars.
    Chakraborty K; Bhaduri D; Meena HN; Kalariya K
    Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of plant salt response: insights from proteomics.
    Zhang H; Han B; Wang T; Chen S; Li H; Zhang Y; Dai S
    J Proteome Res; 2012 Jan; 11(1):49-67. PubMed ID: 22017755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress salinity in plants: New strategies to cope with in the foreseeable scenario.
    Hualpa-Ramirez E; Carrasco-Lozano EC; Madrid-Espinoza J; Tejos R; Ruiz-Lara S; Stange C; Norambuena L
    Plant Physiol Biochem; 2024 Mar; 208():108507. PubMed ID: 38467083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt resistant crop plants.
    Roy SJ; Negrão S; Tester M
    Curr Opin Biotechnol; 2014 Apr; 26():115-24. PubMed ID: 24679267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding plant responses to saline waterlogging: insights from halophytes and implications for crop tolerance.
    Martins TS; Da-Silva CJ; Shabala S; Striker GG; Carvalho IR; de Oliveira ACB; do Amarante L
    Planta; 2023 Dec; 259(1):24. PubMed ID: 38108902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halophytes and other molecular strategies for the generation of salt-tolerant crops.
    Barros NLF; Marques DN; Tadaiesky LBA; de Souza CRB
    Plant Physiol Biochem; 2021 May; 162():581-591. PubMed ID: 33773233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation Strategies of Halophytic Barley
    Isayenkov S; Hilo A; Rizzo P; Tandron Moya YA; Rolletschek H; Borisjuk L; Radchuk V
    Int J Mol Sci; 2020 Nov; 21(23):. PubMed ID: 33260985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion homeostasis for salinity tolerance in plants: a molecular approach.
    Amin I; Rasool S; Mir MA; Wani W; Masoodi KZ; Ahmad P
    Physiol Plant; 2021 Apr; 171(4):578-594. PubMed ID: 32770745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars.
    Cai ZQ; Gao Q
    BMC Plant Biol; 2020 Feb; 20(1):70. PubMed ID: 32050903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms.
    Abdul Aziz M; Masmoudi K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel gene SbSI-2 encoding nuclear protein from a halophyte confers abiotic stress tolerance in E. coli and tobacco.
    Yadav NS; Singh VK; Singh D; Jha B
    PLoS One; 2014; 9(7):e101926. PubMed ID: 24999628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress.
    Guo H; Li S; Min W; Ye J; Hou Z
    PLoS One; 2019; 14(12):e0226776. PubMed ID: 31869397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems.
    Rawat N; Wungrampha S; Singla-Pareek SL; Yu M; Shabala S; Pareek A
    Mol Plant; 2022 Jan; 15(1):45-64. PubMed ID: 34915209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ectopic Expression of
    Zheng J; Lin R; Pu L; Wang Z; Mei Q; Zhang M; Jian S
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33429984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives.
    Anwar A; Kim JK
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.