These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32478516)

  • 41. Reactions of dinitrogen pentoxide and nitrogen dioxide with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.
    Lai CC; Finlayson-Pitts BJ
    Lipids; 1991 Apr; 26(4):306-14. PubMed ID: 1865766
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and dynamics of interfacial water in model lung surfactants.
    Ghosh A; Campen RK; Sovago M; Bonn M
    Faraday Discuss; 2009; 141():145-59; discussion 175-207. PubMed ID: 19227356
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of lipid ozonation products on liposomal membranes detected by Laurdan fluorescence.
    Salgo MG; Cueto R; Pryor WA
    Free Radic Biol Med; 1995 Nov; 19(5):609-16. PubMed ID: 8529920
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effects of oxidised phospholipids and cholesterol on the biophysical properties of POPC bilayers.
    Schumann-Gillett A; O'Mara ML
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):210-219. PubMed ID: 30053406
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterodyne-detected vibrational sum frequency generation spectroscopy.
    Stiopkin IV; Jayathilake HD; Bordenyuk AN; Benderskii AV
    J Am Chem Soc; 2008 Feb; 130(7):2271-5. PubMed ID: 18217755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vibrational sum frequency generation spectroscopy of secondary organic material produced by condensational growth from α-pinene ozonolysis.
    Shrestha M; Zhang Y; Ebben CJ; Martin ST; Geiger FM
    J Phys Chem A; 2013 Sep; 117(35):8427-36. PubMed ID: 23876044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polarization-Dependent Heterodyne-Detected Sum-Frequency Generation Spectroscopy as a Tool to Explore Surface Molecular Orientation and Ångström-Scale Depth Profiling.
    Yu CC; Seki T; Chiang KY; Tang F; Sun S; Bonn M; Nagata Y
    J Phys Chem B; 2022 Aug; 126(33):6113-6124. PubMed ID: 35849538
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Water-binding phospholipid nanodomains and phase-separated diacylglycerol nanodomains regulate enzyme reactions in lipid monolayers.
    Nagashima T; Uematsu S
    Langmuir; 2015 Feb; 31(4):1479-88. PubMed ID: 25565217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aldose reductase-catalyzed reduction of aldehyde phospholipids.
    Srivastava S; Spite M; Trent JO; West MB; Ahmed Y; Bhatnagar A
    J Biol Chem; 2004 Dec; 279(51):53395-406. PubMed ID: 15465833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Capturing inhomogeneous broadening of the -CN stretch vibration in a Langmuir monolayer with high-resolution spectra and ultrafast vibrational dynamics in sum-frequency generation vibrational spectroscopy (SFG-VS).
    Velarde L; Wang HF
    J Chem Phys; 2013 Aug; 139(8):084204. PubMed ID: 24006990
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lipid ozonation products activate phospholipases A2, C, and D.
    Kafoury RM; Pryor WA; Squadrito GL; Salgo MG; Zou X; Friedman M
    Toxicol Appl Pharmacol; 1998 Jun; 150(2):338-49. PubMed ID: 9653065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unified treatment and measurement of the spectral resolution and temporal effects in frequency-resolved sum-frequency generation vibrational spectroscopy (SFG-VS).
    Velarde L; Wang HF
    Phys Chem Chem Phys; 2013 Dec; 15(46):19970-84. PubMed ID: 24076622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Langevin dynamics studies of unsaturated phospholipids in a membrane environment.
    Pearce LL; Harvey SC
    Biophys J; 1993 Sep; 65(3):1084-92. PubMed ID: 8241389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of the Criegee ozonide during the ozonation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes.
    Squadrito GL; Uppu RM; Cueto R; Pryor WA
    Lipids; 1992 Dec; 27(12):955-8. PubMed ID: 1487956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Closely related oxidized phospholipids differentially modulate the physicochemical properties of lipid particles.
    Kar S; Tillu VA; Meena SC; Pande AH
    Chem Phys Lipids; 2011 Jan; 164(1):54-61. PubMed ID: 21074521
    [TBL] [Abstract][Full Text] [Related]  

  • 56. General model of phospholipid bilayers in fluid phase within the single chain mean field theory.
    Guo Y; Pogodin S; Baulin VA
    J Chem Phys; 2014 May; 140(17):174903. PubMed ID: 24811664
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative time-resolved vibrational sum frequency generation spectroscopy as a tool for thin film kinetic studies: new insights into oleic acid monolayer oxidation.
    Kleber J; Laß K; Friedrichs G
    J Phys Chem A; 2013 Aug; 117(33):7863-75. PubMed ID: 23808968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular structure upon compression and stability toward oxidation of Langmuir films of unsaturated fatty acids: a vibrational sum frequency spectroscopy study.
    Tyrode E; Niga P; Johnson M; Rutland MW
    Langmuir; 2010 Sep; 26(17):14024-31. PubMed ID: 20666467
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cholesterol provides nonsacrificial protection of membrane lipids from chemical damage at air-water interface.
    Zhang X; Barraza KM; Beauchamp JL
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):3255-3260. PubMed ID: 29507237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: Implications in membrane structure.
    Rosa R; Spinozzi F; Itri R
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2299-2307. PubMed ID: 29852123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.