BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32478965)

  • 1. Reducing Agent-Mediated Nonenzymatic Conversion of 2-Oxoglutarate to Succinate: Implications for Oxygenase Assays.
    Khan A; Schofield CJ; Claridge TDW
    Chembiochem; 2020 Oct; 21(20):2898-2902. PubMed ID: 32478965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans.
    Welford RW; Kirkpatrick JM; McNeill LA; Puri M; Oldham NJ; Schofield CJ
    FEBS Lett; 2005 Sep; 579(23):5170-4. PubMed ID: 16153644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria.
    Jia B; Jia X; Kim KH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Feb; 1861(2):323-334. PubMed ID: 27919802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators.
    Fletcher SC; Coleman ML
    Biochem Soc Trans; 2020 Oct; 48(5):1843-1858. PubMed ID: 32985654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Oxoglutarate derivatives can selectively enhance or inhibit the activity of human oxygenases.
    Nakashima Y; Brewitz L; Tumber A; Salah E; Schofield CJ
    Nat Commun; 2021 Nov; 12(1):6478. PubMed ID: 34759269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repurposing Iron- and 2-Oxoglutarate-Dependent Oxygenases to Catalyze Olefin Hydration.
    Wang B; Lu Y; Cha L; Chen TY; Palacios PM; Li L; Guo Y; Chang WC; Chen C
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202311099. PubMed ID: 37639670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of 2-oxoglutarate dependent oxygenases.
    Rose NR; McDonough MA; King ON; Kawamura A; Schofield CJ
    Chem Soc Rev; 2011 Aug; 40(8):4364-97. PubMed ID: 21390379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation by 2-oxoglutarate oxygenases: non-haem iron systems in catalysis and signalling.
    Hewitson KS; Granatino N; Welford RW; McDonough MA; Schofield CJ
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):807-28; discussion 1035-40. PubMed ID: 15901537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Iron(IV)-Oxo Intermediate Initiating l-Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme.
    Copeland RA; Davis KM; Shoda TKC; Blaesi EJ; Boal AK; Krebs C; Bollinger JM
    J Am Chem Soc; 2021 Feb; 143(5):2293-2303. PubMed ID: 33522811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic insights into a non-heme 2-oxoglutarate-dependent ethylene-forming enzyme: selectivity of ethylene-formation versusl-Arg hydroxylation.
    Xue J; Lu J; Lai W
    Phys Chem Chem Phys; 2019 May; 21(19):9957-9968. PubMed ID: 31041955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artefacts in cell culture: α-Ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture media.
    Long LH; Halliwell B
    Biochem Biophys Res Commun; 2011 Mar; 406(1):20-4. PubMed ID: 21281600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa.
    Jia B; Tang K; Chun BH; Jeon CO
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2922-2933. PubMed ID: 28847508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic states of the DNA repair enzyme AlkB regulate product release.
    Bleijlevens B; Shivarattan T; Flashman E; Yang Y; Simpson PJ; Koivisto P; Sedgwick B; Schofield CJ; Matthews SJ
    EMBO Rep; 2008 Sep; 9(9):872-7. PubMed ID: 18617893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The selectivity and inhibition of AlkB.
    Welford RW; Schlemminger I; McNeill LA; Hewitson KS; Schofield CJ
    J Biol Chem; 2003 Mar; 278(12):10157-61. PubMed ID: 12517755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dioxygen Binding Is Controlled by the Protein Environment in Non-heme Fe
    Chaturvedi SS; Thomas MG; Rifayee SBJS; White W; Wildey J; Warner C; Schofield CJ; Hu J; Hausinger RP; Karabencheva-Christova TG; Christov CZ
    Chemistry; 2023 Apr; 29(24):e202300138. PubMed ID: 36701641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist.
    Martinez S; Fellner M; Herr CQ; Ritchie A; Hu J; Hausinger RP
    J Am Chem Soc; 2017 Aug; 139(34):11980-11988. PubMed ID: 28780854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases.
    Tarhonskaya H; Szöllössi A; Leung IK; Bush JT; Henry L; Chowdhury R; Iqbal A; Claridge TD; Schofield CJ; Flashman E
    Biochemistry; 2014 Apr; 53(15):2483-93. PubMed ID: 24684493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases.
    Tarhonskaya H; Rydzik AM; Leung IK; Loik ND; Chan MC; Kawamura A; McCullagh JS; Claridge TD; Flashman E; Schofield CJ
    Nat Commun; 2014 Mar; 5():3423. PubMed ID: 24594748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases.
    Aravind L; Koonin EV
    Genome Biol; 2001; 2(3):RESEARCH0007. PubMed ID: 11276424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3beta-hydroxylase.
    Turnbull JJ; Nakajima J; Welford RW; Yamazaki M; Saito K; Schofield CJ
    J Biol Chem; 2004 Jan; 279(2):1206-16. PubMed ID: 14570878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.