BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 32479092)

  • 1. Unsaturation Elements and Other Modifications of Phospholipids in Bacteria: New Insight from Ultraviolet Photodissociation Mass Spectrometry.
    Blevins MS; James VK; Herrera CM; Purcell AB; Trent MS; Brodbelt JS
    Anal Chem; 2020 Jul; 92(13):9146-9155. PubMed ID: 32479092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of Double Bonds in Bacterial Glycerophospholipids Using 193 nm Ultraviolet Photodissociation in the Negative Mode.
    Klein DR; Blevins MS; Macias LA; Douglass MV; Trent MS; Brodbelt JS
    Anal Chem; 2020 Apr; 92(8):5986-5993. PubMed ID: 32212719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of Cyclopropane Modifications in Bacterial Lipids via 213 nm Ultraviolet Photodissociation Mass Spectrometry.
    Blevins MS; Klein DR; Brodbelt JS
    Anal Chem; 2019 May; 91(10):6820-6828. PubMed ID: 31026154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Characterization of Phosphatidylcholines Using 193 nm Ultraviolet Photodissociation Mass Spectrometry.
    Klein DR; Brodbelt JS
    Anal Chem; 2017 Feb; 89(3):1516-1522. PubMed ID: 28105803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of Intrachain Modifications in Bacterial Lipids Via Radical-Directed Dissociation.
    Lin Q; Li P; Jian R; Xia Y
    J Am Soc Mass Spectrom; 2022 Apr; 33(4):714-721. PubMed ID: 35195000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absence of YhdP, TamB, and YdbH leads to defects in glycerophospholipid transport and cell morphology in Gram-negative bacteria.
    Douglass MV; McLean AB; Trent MS
    PLoS Genet; 2022 Feb; 18(2):e1010096. PubMed ID: 35226662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Characterization of Cardiolipins via Hybrid 193 nm Ultraviolet Photodissociation Mass Spectrometry.
    Macias LA; Brodbelt JS
    Anal Chem; 2022 Feb; 94(7):3268-3277. PubMed ID: 35135194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major roles for minor bacterial lipids identified by mass spectrometry.
    Garrett TA
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Nov; 1862(11):1319-1324. PubMed ID: 27760388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid identification of glycerophospholipids from RAW264.7 cells by UPLC/ESI -QTOF-MS.
    She Y; Song J; Yang E; Zhao L; Zhong Y; Rui W; Feng Y; Wu X
    Biomed Chromatogr; 2014 Dec; 28(12):1744-55. PubMed ID: 24806596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolic change in serum lysoglycerophospholipids intervened by triterpenoid saponins from Kuding tea on hyperlipidemic mice.
    Shi Q; Jin S; Xiang X; Tian J; Huang R; Li S; Chen C; Xu H; Song C
    Food Funct; 2019 Dec; 10(12):7782-7792. PubMed ID: 31782452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of unsaturated glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization.
    Hsu FF; Turk J
    J Am Soc Mass Spectrom; 2008 Nov; 19(11):1681-91. PubMed ID: 18771936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Least squares spectral resolution of liquid chromatography-mass spectrometry data of glycerophospholipids.
    Zeng YX; Mjøs SA; Meier S; Lin CC; Vadla R
    J Chromatogr A; 2013 Mar; 1280():23-34. PubMed ID: 23375768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UPLC/MS based method for quantitative determination of fatty acid composition in Gram-negative and Gram-positive bacteria.
    Spitsmeister M; Adamberg K; Vilu R
    J Microbiol Methods; 2010 Sep; 82(3):288-95. PubMed ID: 20621131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes.
    Gupta RS
    Antonie Van Leeuwenhoek; 2011 Aug; 100(2):171-82. PubMed ID: 21717204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate efflux propensity is the key determinant of Ca2+-independent phospholipase A-β (iPLAβ)-mediated glycerophospholipid hydrolysis.
    Batchu KC; Hokynar K; Jeltsch M; Mattonet K; Somerharju P
    J Biol Chem; 2015 Apr; 290(16):10093-103. PubMed ID: 25713085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the Signal-to-Noise of Diagnostic Fragment Ions of Unsaturated Glycerophospholipids via Precursor Exclusion Ultraviolet Photodissociation Mass Spectrometry (PEx-UVPD-MS).
    Shields SWJ; Sanders JD; Brodbelt JS
    Anal Chem; 2022 Aug; 94(32):11352-11359. PubMed ID: 35917227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids.
    Hishikawa D; Valentine WJ; Iizuka-Hishikawa Y; Shindou H; Shimizu T
    FEBS Lett; 2017 Sep; 591(18):2730-2744. PubMed ID: 28833063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of bacterial sensitivity and resistance to mammalian Group IIA phospholipase A2.
    Weiss JP
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt B):3072-7. PubMed ID: 26079797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unravelling the mechanism of action of "de novo" designed peptide P1 with model membranes and gram-positive and gram-negative bacteria.
    Espeche JC; Martínez M; Maturana P; Cutró A; Semorile L; Maffia PC; Hollmann A
    Arch Biochem Biophys; 2020 Oct; 693():108549. PubMed ID: 32828795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial phospholipid analysis by fast atom bombardment mass spectrometry.
    Pramanik BN; Zechman JM; Das PR; Bartner PL
    Biomed Environ Mass Spectrom; 1990 Mar; 19(3):164-70. PubMed ID: 2331532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.