These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 32479338)

  • 21. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review.
    Zhai R; Chen G; Liu G; Huang X; Xu X; Li L; Zhang Y; Wang J; Jin M; Xu D; Abd El-Aty AM
    J Adv Res; 2022 Mar; 37():61-74. PubMed ID: 35499055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum Dots Applied to Methodology on Detection of Pesticide and Veterinary Drug Residues.
    Zhou JW; Zou XM; Song SH; Chen GH
    J Agric Food Chem; 2018 Feb; 66(6):1307-1319. PubMed ID: 29378133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of enzymatic electrochemical biosensors for organophosphorus pesticide detection.
    Hu H; Yang L
    J Environ Sci Health B; 2021; 56(2):168-180. PubMed ID: 33284686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pesticide analytical screening system (PASS): A novel electrochemical system for multiplex screening of glyphosate and chlorpyrifos in high-fat and low-fat food matrices.
    Poudyal DC; Dhamu VN; Samson M; Muthukumar S; Prasad S
    Food Chem; 2023 Jan; 400():134075. PubMed ID: 36075171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions.
    Babamiri B; Bahari D; Salimi A
    Biosens Bioelectron; 2019 Oct; 142():111530. PubMed ID: 31398687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunoassay Biosensing of Foodborne Pathogens with Surface Plasmon Resonance Imaging: A Review.
    Wang B; Park B
    J Agric Food Chem; 2020 Nov; 68(46):12927-12939. PubMed ID: 32816471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contributions of pesticide residue chemistry to improving food and environmental safety: past and present accomplishments and future challenges.
    Seiber JN; Kleinschmidt LA
    J Agric Food Chem; 2011 Jul; 59(14):7536-43. PubMed ID: 21473621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A review on novel developments and applications of immunosensors in food analysis.
    Ricci F; Volpe G; Micheli L; Palleschi G
    Anal Chim Acta; 2007 Dec; 605(2):111-29. PubMed ID: 18036374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immunosensors: electrochemical sensing and other engineering approaches.
    Ghindilis AL; Atanasov P; Wilkins M; Wilkins E
    Biosens Bioelectron; 1998 Jan; 13(1):113-31. PubMed ID: 9519454
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Sandwich SERS Immunosensors for Cancer Detection.
    Pollap A; Świt P
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potentialities of fluorescent carbon nanomaterials as sensor for food analysis.
    Sabui P; Mallick S; Singh KR; Natarajan A; Verma R; Singh J; Singh RP
    Luminescence; 2023 Jul; 38(7):1047-1063. PubMed ID: 36355396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical sensing techniques for rapid detection of agrochemicals: Strategies, challenges, and perspectives.
    Li Z; Lin H; Wang L; Cao L; Sui J; Wang K
    Sci Total Environ; 2022 Sep; 838(Pt 3):156515. PubMed ID: 35667437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges.
    Farka Z; Juřík T; Kovář D; Trnková L; Skládal P
    Chem Rev; 2017 Aug; 117(15):9973-10042. PubMed ID: 28753280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunoanalytical techniques for pesticide monitoring based on fluorescence detection.
    Schobel U; Barzen C; Gauglitz G
    Fresenius J Anal Chem; 2000; 366(6-7):646-58. PubMed ID: 11225776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical immunosensors.
    Rabbany SY; Donner BL; Ligler FS
    Crit Rev Biomed Eng; 1994; 22(5-6):307-46. PubMed ID: 8631193
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new surface plasmon resonance immunosensor for triazine pesticide determination in bovine milk: a comparison with conventional amperometric and screen-printed immunodevices.
    Tomassetti M; Martini E; Campanella L; Favero G; Sanzó G; Mazzei F
    Sensors (Basel); 2015 Apr; 15(5):10255-70. PubMed ID: 25942643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomaterials-based optical techniques for the detection of acetylcholinesterase and pesticides.
    Xia N; Wang Q; Liu L
    Sensors (Basel); 2014 Dec; 15(1):499-514. PubMed ID: 25558991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunosensors--principles and applications to clinical chemistry.
    Luppa PB; Sokoll LJ; Chan DW
    Clin Chim Acta; 2001 Dec; 314(1-2):1-26. PubMed ID: 11718675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A scientometric study on application of electrochemical sensors for detection of pesticide using graphene-based electrode modifiers.
    Zheng Y; Mao S; Zhu J; Fu L; Moghadam M
    Chemosphere; 2022 Nov; 307(Pt 4):136069. PubMed ID: 35985381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunosensors for pesticide analysis: antibody production and sensor development.
    Raman SC; Raje M; Varshney GC
    Crit Rev Biotechnol; 2002; 22(1):15-32. PubMed ID: 11958334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.