These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32479523)

  • 1. Initial allocation of flood drainage rights based on a PSR model and entropy-based matter-element theory in the Sunan Canal, China.
    Sun F; Lai X; Shen J; Nie L; Gao X
    PLoS One; 2020; 15(6):e0233570. PubMed ID: 32479523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allocation of Flood Drainage Rights in Watershed Using a Hybrid FBWM-Grey-TOPSIS Method: A Case Study of the Jiangsu Section of the Sunan Canal, China.
    Zhang X; Shen J; Sun F; Wang S; Zhang S; Chen J
    Int J Environ Res Public Health; 2022 Jul; 19(13):. PubMed ID: 35805839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the Allocation of Regional Flood Drainage Rights in Watershed Based on Entropy Weight TOPSIS Model: A Case Study of the Jiangsu Section of the Huaihe River, China.
    Zhang K; Shen J; Han H; Zhang J
    Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32668694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allocation of Flood Drainage Rights Based on the PSR Model and Pythagoras Fuzzy TOPSIS Method.
    Zhang D; Shen J; Liu P; Sun F
    Int J Environ Res Public Health; 2020 Aug; 17(16):. PubMed ID: 32796760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Fuzzy Analytic Hierarchy Process and Environmental Gini Coefficient for Allocation of Regional Flood Drainage Rights.
    Zhang D; Shen J; Liu P; Zhang Q; Sun F
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32244959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the stormwater management model to a piedmont city: a case study of Jinan City, China.
    Yu H; Huang G; Wu C
    Water Sci Technol; 2014; 70(5):858-64. PubMed ID: 25225933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to urbanization impacts on drainage in the city of Hohhot, China.
    Zhou Q; Ren Y; Xu M; Han N; Wang H
    Water Sci Technol; 2016; 73(1):167-75. PubMed ID: 26744948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urban flood mitigation planning for Guwahati: A case of Bharalu basin.
    Sarmah T; Das S
    J Environ Manage; 2018 Jan; 206():1155-1165. PubMed ID: 29129524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.
    Peng HQ; Liu Y; Wang HW; Ma LM
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15712-21. PubMed ID: 26022395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Street floods in Metro Manila and possible solutions.
    Lagmay AM; Mendoza J; Cipriano F; Delmendo PA; Lacsamana MN; Moises MA; Pellejera N; Punay KN; Sabio G; Santos L; Serrano J; Taniza HJ; Tingin NE
    J Environ Sci (China); 2017 Sep; 59():39-47. PubMed ID: 28888237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Management of the designed risk level of urban drainage system in the future: Evidence from haining city, China.
    Lou Y; Wang P; Li Y; Wang L; Chen C; Li J; Hu T
    J Environ Manage; 2024 Feb; 351():119846. PubMed ID: 38128205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flood forecasting within urban drainage systems using NARX neural network.
    Abou Rjeily Y; Abbas O; Sadek M; Shahrour I; Hage Chehade F
    Water Sci Technol; 2017 Nov; 76(9-10):2401-2412. PubMed ID: 29144298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing catchment scale flood resilience of urban areas using a grid cell based metric.
    Wang Y; Meng F; Liu H; Zhang C; Fu G
    Water Res; 2019 Oct; 163():114852. PubMed ID: 31325702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urban flood risk warning under rapid urbanization.
    Chen Y; Zhou H; Zhang H; Du G; Zhou J
    Environ Res; 2015 May; 139():3-10. PubMed ID: 25769509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time forecasting urban drainage models: full or simplified networks?
    Leitão JP; Simões NE; Maksimović C; Ferreira F; Prodanović D; Matos JS; Sá Marques A
    Water Sci Technol; 2010; 62(9):2106-14. PubMed ID: 21045338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of urban storm drainage network under changing climate scenarios: Flood mitigation in Indian coastal city.
    Andimuthu R; Kandasamy P; Mudgal BV; Jeganathan A; Balu A; Sankar G
    Sci Rep; 2019 May; 9(1):7783. PubMed ID: 31123273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urban flood resilience assessment using RAGA-PP and KL-TOPSIS model based on PSR framework: A case study of Jiangsu province, China.
    Ji J; Chen J
    Water Sci Technol; 2022 Dec; 86(12):3264-3280. PubMed ID: 36579883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated assessment of drainage system reconstruction based on a drainage network model.
    Liao Z; Gu X; Xie J; Wang X; Chen J
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26563-26576. PubMed ID: 31292865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A global analysis approach for investigating structural resilience in urban drainage systems.
    Mugume SN; Gomez DE; Fu G; Farmani R; Butler D
    Water Res; 2015 Sep; 81():15-26. PubMed ID: 26024960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Affect Path to Flood Protective Coping Behaviors using SEM based on A Survey in Shenzhen, China.
    Huang J; Cao W; Wang H; Wang Z
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32028712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.