These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32479610)

  • 1. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans.
    Binas O; Schamber T; Schwalbe H
    Nucleic Acids Res; 2020 Jul; 48(12):6970-6979. PubMed ID: 32479610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation on the Thermosinus carboxydivorans pfl ZTP riboswitch by ligand binding.
    Yu-Nan H; Kang W; Yu S; Xiao-Jun X; Yan W; Xing-Ao L; Ting-Ting S
    Biochem Biophys Res Commun; 2022 Oct; 627():184-190. PubMed ID: 36044800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global RNA Fold and Molecular Recognition for a pfl Riboswitch Bound to ZMP, a Master Regulator of One-Carbon Metabolism.
    Ren A; Rajashankar KR; Patel DJ
    Structure; 2015 Aug; 23(8):1375-1381. PubMed ID: 26118534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudoknot preorganization of the preQ1 class I riboswitch.
    Santner T; Rieder U; Kreutz C; Micura R
    J Am Chem Soc; 2012 Jul; 134(29):11928-31. PubMed ID: 22775200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Ion-Mediated Nucleobase Recognition by the ZTP Riboswitch.
    Trausch JJ; Marcano-Velázquez JG; Matyjasik MM; Batey RT
    Chem Biol; 2015 Jul; 22(7):829-37. PubMed ID: 26144884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cotranscriptional RNA strand exchange underlies the gene regulation mechanism in a purine-sensing transcriptional riboswitch.
    Cheng L; White EN; Brandt NL; Yu AM; Chen AA; Lucks JB
    Nucleic Acids Res; 2022 Nov; 50(21):12001-12018. PubMed ID: 35348734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Challenges of ligand identification for riboswitch candidates.
    Meyer MM; Hammond MC; Salinas Y; Roth A; Sudarsan N; Breaker RR
    RNA Biol; 2011; 8(1):5-10. PubMed ID: 21317561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of single ZTP riboswitches reveals a complex and kinetically controlled decision landscape.
    Hua B; Jones CP; Mitra J; Murray PJ; Rosenthal R; Ferré-D'Amaré AR; Ha T
    Nat Commun; 2020 Sep; 11(1):4531. PubMed ID: 32913225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bacterial riboswitch class senses xanthine and uric acid to regulate genes associated with purine oxidation.
    Yu D; Breaker RR
    RNA; 2020 Aug; 26(8):960-968. PubMed ID: 32345632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism.
    Kim PB; Nelson JW; Breaker RR
    Mol Cell; 2015 Jan; 57(2):317-28. PubMed ID: 25616067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation.
    Jenkins JL; Krucinska J; McCarty RM; Bandarian V; Wedekind JE
    J Biol Chem; 2011 Jul; 286(28):24626-37. PubMed ID: 21592962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics.
    Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ligand-gated strand displacement mechanism for ZTP riboswitch transcription control.
    Strobel EJ; Cheng L; Berman KE; Carlson PD; Lucks JB
    Nat Chem Biol; 2019 Nov; 15(11):1067-1076. PubMed ID: 31636437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing fluorescent biosensors using circular permutations of riboswitches.
    Truong J; Hsieh YF; Truong L; Jia G; Hammond MC
    Methods; 2018 Jul; 143():102-109. PubMed ID: 29458090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch.
    Stoddard CD; Widmann J; Trausch JJ; Marcano-Velázquez JG; Knight R; Batey RT
    J Mol Biol; 2013 May; 425(10):1596-611. PubMed ID: 23485418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.