These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32479610)

  • 21. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR Structural Profiling of Transcriptional Intermediates Reveals Riboswitch Regulation by Metastable RNA Conformations.
    Helmling C; Wacker A; Wolfinger MT; Hofacker IL; Hengesbach M; Fürtig B; Schwalbe H
    J Am Chem Soc; 2017 Feb; 139(7):2647-2656. PubMed ID: 28134517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The asymmetry and cooperativity of tandem glycine riboswitch aptamers.
    Torgerson CD; Hiller DA; Strobel SA
    RNA; 2020 May; 26(5):564-580. PubMed ID: 31992591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA.
    Knappenberger AJ; Reiss CW; Strobel SA
    Elife; 2018 Jun; 7():. PubMed ID: 29877798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from
    Liu L; Luo D; Zhang Y; Liu D; Yin K; Tang Q; Chou S-H; He J
    Microbiol Spectr; 2024 Jul; 12(7):e0045024. PubMed ID: 38819160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic regulation mechanism of the yjdF riboswitch.
    Gong S; Wang Y; Wang Z; Wang Y; Zhang W
    J Theor Biol; 2018 Feb; 439():152-159. PubMed ID: 29223402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical Validation of a Fourth Guanidine Riboswitch Class in Bacteria.
    Salvail H; Balaji A; Yu D; Roth A; Breaker RR
    Biochemistry; 2020 Dec; 59(49):4654-4662. PubMed ID: 33236895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single-molecule FRET studies on the cotranscriptional folding of a thiamine pyrophosphate riboswitch.
    Uhm H; Kang W; Ha KS; Kang C; Hohng S
    Proc Natl Acad Sci U S A; 2018 Jan; 115(2):331-336. PubMed ID: 29279370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel Discovery Strategies Provide a Basis for Riboswitch Ligand Design.
    Tran B; Pichling P; Tenney L; Connelly CM; Moon MH; Ferré-D'Amaré AR; Schneekloth JS; Jones CP
    Cell Chem Biol; 2020 Oct; 27(10):1241-1249.e4. PubMed ID: 32795418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognition of the bacterial alarmone ZMP through long-distance association of two RNA subdomains.
    Jones CP; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2015 Sep; 22(9):679-85. PubMed ID: 26280533
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bacterial 2'-Deoxyguanosine Riboswitch Classes as Potential Targets for Antibiotics: A Structure and Dynamics Study.
    Antunes D; Santos LHS; Caffarena ER; Guimarães ACR
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient computation of co-transcriptional RNA-ligand interaction dynamics.
    Wolfinger MT; Flamm C; Hofacker IL
    Methods; 2018 Jul; 143():70-76. PubMed ID: 29730250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation.
    Steinert H; Sochor F; Wacker A; Buck J; Helmling C; Hiller F; Keyhani S; Noeske J; Grimm S; Rudolph MM; Keller H; Mooney RA; Landick R; Suess B; Fürtig B; Wöhnert J; Schwalbe H
    Elife; 2017 May; 6():. PubMed ID: 28541183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bacterial riboswitch class for the thiamin precursor HMP-PP employs a terminator-embedded aptamer.
    Atilho RM; Mirihana Arachchilage G; Greenlee EB; Knecht KM; Breaker RR
    Elife; 2019 Apr; 8():. PubMed ID: 30950790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.