These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 32480260)
21. Structural adaptations in the bovine serum albumin protein in archetypal deep eutectic solvent reline and its aqueous mixtures. Kumari M; Kumari P; Kashyap HK Phys Chem Chem Phys; 2022 Mar; 24(9):5627-5637. PubMed ID: 35175257 [TBL] [Abstract][Full Text] [Related]
22. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Dai Y; Witkamp GJ; Verpoorte R; Choi YH Food Chem; 2015 Nov; 187():14-9. PubMed ID: 25976992 [TBL] [Abstract][Full Text] [Related]
23. The phenolic profile extracted from the desiccation-tolerant medicinal shrub Myrothamnus flabellifolia using Natural Deep Eutectic Solvents varies according to the solvation conditions. Bentley J; Olsen EK; Moore JP; Farrant JM Phytochemistry; 2020 May; 173():112323. PubMed ID: 32113067 [TBL] [Abstract][Full Text] [Related]
24. Role of oxidative stress in physiological albumin glycation: a neglected interaction. Vlassopoulos A; Lean ME; Combet E Free Radic Biol Med; 2013 Jul; 60():318-24. PubMed ID: 23517782 [TBL] [Abstract][Full Text] [Related]
25. Natural deep eutectic solvents as new potential media for green technology. Dai Y; van Spronsen J; Witkamp GJ; Verpoorte R; Choi YH Anal Chim Acta; 2013 Mar; 766():61-8. PubMed ID: 23427801 [TBL] [Abstract][Full Text] [Related]
26. Enhancing the solubility and emulsion properties of rice protein by deamidation of citric acid-based natural deep eutectic solvents. Shi W; Xie H; Ouyang K; Shi Q; Xiong H; Zhao Q Food Res Int; 2024 Jan; 175():113762. PubMed ID: 38128999 [TBL] [Abstract][Full Text] [Related]
27. Investigation of the antimicrobial effect of natural deep eutectic solvents (NADES) as solvents in antimicrobial photodynamic therapy. Wikene KO; Rukke HV; Bruzell E; Tønnesen HH J Photochem Photobiol B; 2017 Jun; 171():27-33. PubMed ID: 28472722 [TBL] [Abstract][Full Text] [Related]
28. Functional improvements in bovine serum albumin-fucoidan conjugate through the Maillard reaction. Kim DY; Shin WS Food Chem; 2016 Jan; 190():974-981. PubMed ID: 26213064 [TBL] [Abstract][Full Text] [Related]
29. Characterisation of bovine serum albumin-fucoidan conjugates prepared via the Maillard reaction. Kim DY; Shin WS Food Chem; 2015 Apr; 173():1-6. PubMed ID: 25465988 [TBL] [Abstract][Full Text] [Related]
30. Conjugates of bovine serum albumin with chitin oligosaccharides prepared through the Maillard reaction. Ledesma-Osuna AI; Ramos-Clamont G; Guzman-Partida AM; Vazquez-Moreno L J Agric Food Chem; 2010 Nov; 58(22):12000-5. PubMed ID: 21043451 [TBL] [Abstract][Full Text] [Related]
32. Protective effect of cyanidin against glucose- and methylglyoxal-induced protein glycation and oxidative DNA damage. Suantawee T; Cheng H; Adisakwattana S Int J Biol Macromol; 2016 Dec; 93(Pt A):814-821. PubMed ID: 27645922 [TBL] [Abstract][Full Text] [Related]
33. Food-Grade Synthesis of Maillard-Type Taste Enhancers Using Natural Deep Eutectic Solvents (NADES). Kranz M; Hofmann T Molecules; 2018 Jan; 23(2):. PubMed ID: 29382108 [TBL] [Abstract][Full Text] [Related]
35. Fructose-induced fluorescence generation of reductively methylated glycated bovine serum albumin: evidence for nonenzymatic glycation of Amadori adducts. Suárez G; Maturana J; Oronsky AL; Raventós-Suárez C Biochim Biophys Acta; 1991 Sep; 1075(1):12-9. PubMed ID: 1892863 [TBL] [Abstract][Full Text] [Related]
36. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction. Demian WL; Kottari N; Shiao TC; Randell E; Roy R; Banoub JH J Mass Spectrom; 2014 Dec; 49(12):1223-33. PubMed ID: 25476939 [TBL] [Abstract][Full Text] [Related]
37. Oxidative damage of vascular smooth muscle cells by the glycated protein-cupric ion system. Sakata N; Miyamoto K; Meng J; Tachikawa Y; Imanaga Y; Takebayashi S; Furukawa T Atherosclerosis; 1998 Feb; 136(2):263-74. PubMed ID: 9543097 [TBL] [Abstract][Full Text] [Related]
38. Cyanidin 3-rutinoside defibrillated bovine serum albumin under the glycation-promoting conditions: A study with multispectral, microstructural, and computational analysis. Khalifa I; Sobhy R; Nawaz A; Xiaoou W; Li Z; Zou X Int J Biol Macromol; 2020 Nov; 162():1195-1203. PubMed ID: 32603729 [TBL] [Abstract][Full Text] [Related]
39. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose. Nakamura K; Nakazawa Y; Ienaga K Biochem Biophys Res Commun; 1997 Mar; 232(1):227-30. PubMed ID: 9125137 [TBL] [Abstract][Full Text] [Related]
40. Improvement of functional properties of bovine serum albumin through phosphorylation by dry-heating in the presence of pyrophosphate. Enomoto H; Li CP; Morizane K; Ibrahim HR; Sugimoto Y; Ohki S; Ohtomo H; Aoki T J Food Sci; 2008 Mar; 73(2):C84-91. PubMed ID: 18298721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]